
Artificial Evolution 2015

12th Biennal International Conference on Artificial Evolution

Proceedings

26-28 October 2015, Lyon, France

Stéphane Bonnevay Pierrick Legrand Nicolas Monmarché Evelyne Lutton
Marc Schoenauer

ISBN: 978-2-9539267-5-0

Contents

Foreword . 3
Program Committee . 4
Steering Committee . 4
Organizing Committee . 4

Papers 5
The Multi-Funnel Structure of TSP Fitness Landscapes: A Visual Exploration,

Gabriela Ochoa, Nadarajen Veerapen, Darrell Whitley and Edmund Burke 6
Approaches for Many-objective Optimization: Analysis and Comparison on MNK-landscapes,

Hernan Aguirre, Saul Zapotecas Martinez, Arnaud Liefooghe, Sebastien Verel and Kiyoshi Tanaka . 21
Traffic Signal Optimization: Minimizing Travel Time and Fuel Consumption,

Rolando Armas, Hernan Aguirre, Saul Zapotecas and Kiyoshi Tanaka 36
Global Sensitivity Analysis and Evolutionary Algorithms,

Thomas Chabin, Alberto Tonda and Evelyne Lutton . 51
Quasi-random numbers improve the CMA-ES on the BBOB testbed,

Olivier Teytaud . 66
Progressive Differential Evolution on Clustering Real World Problems,

Vincent Berthier . 80
Distributed Adaptive Metaheuristic Selection: Comparisons of Selection Strategies,

Christopher Jankee, Verel Sebastien, Bilel Derbel and Cyril Fonlupt 93
Combining Mutation and Recombination to Improve a Distributed Model of Adaptive Operator Selection,

Jorge Alberto Soria-Alcaraz, Gabriela Ochoa, Adrien Goeffon, Frederic Lardeux and Frederic Saubion 108
Parameter Setting for Distributed CMA-ES,

Nacim Belkhir, Johann Dreo, Pierre Saveant and Marc Schoenauer 122
Towards Human-Competitive Game Playing for Complex Board Games with Genetic Programming,

Denis Robilliard and Cyril Fonlupt . 137
SGE: A Structured Representation for Grammatical Evolution,

Nuno Lourenco, Francisco B. Pereira and Ernesto Costa . 150
Greedy Semantic Local Search for Small Solutions,

Robyn Ffrancon and Marc Schoenauer . 163
Effects of Cooperation in a Bioinspired Multi-agent Autonomous System for Solving Optimization Prob-

lems,
Marcus Dos Santos, Denise Souza, Henrique E. Borges, Rogerio M. Gomes and Patrick Siarry . . . 178

Novelty-driven Particle Swarm Optimization,
Diana F. Galvao, Joel Lehman and Paulo Urbano . 193

How a model based on P-temporal Petri Nets can be used to study Aggregation Behavior,
Fatima Debbat, Nicolas Monmarche, Pierre Gaucher, Mohamed Slimane 208

A Distributed Hybrid Algorithm for the Graph Coloring Problem,
Ines Sghir, Jin-Kao Hao, Ines Ben Jaafar and Khaled Ghedira . 223

1

Variance Reduction in Population-Based Optimization: Application to Unit Commitment,
Jean-Joseph Christophe, Jeremie Decock, Jialin Liu and Olivier Teytaud 238

On the codimension of the set of optima: large scale optimisation with few relevant variables,
Vincent Berthier and Olivier Teytaud . 253

Posters 267
Evolutionary Cutting Planes,

David Lupien St-Pierre, Olivier Teytaud and Jeremie Decock . 268
Idol-Guided Backtracking Search Optimization Algorithm,

Mathieu Brevilliers, Omar Abdelkafi, Julien Lepagnot and Lhassane Idoumghar 277
Comparing optimizers on a unit commitment problem,

Vincent Berthier . 286
Combining policies: the best of human expertise and neurocontrol,

Vincent Berthier, Adrien Couetoux and Olivier Teytaud . 295
Acquiring Efficient Locomotion in a Simulated Quadruped through Evolving Random and Predefined

Neural Networks,
Frank Veenstra, Alexander Struck and Matthias Krauledat . 309

Contourlet-Based Multispectral Image Fusion Using Free Search Differential Evolution,
Yifei Wang . 318

A GPU-based parallel neighborhood evaluation for ITSSD,
Omar Abdelkafi, Lhassane Idoumghar, Julien Lepagnot and Mathieu Brevilliers 327

On Migration Policies in Dynamic Island Models,
Frederic Lardeux, Jorge Maturana and Frederic Saubion . 336

Index of authors 344

2

Foreword

This proceedings includes the papers presented at the 12th Biennial International Conference on Artificial Evolution,
EA1 2015, held in Lyon (France). Previous EA editions took place in Bordeaux (2013), Angers (2011), Strasbourg
(2009), Tours (2007), Lille (2005), Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes (1997), Brest
(1995), and Toulouse (1994).

Authors had been invited to present original work relevant to Artificial Evolution, including, but not limited
to: Evolutionary Computation, Evolutionary Optimization, Co-evolution, Artificial Life, Population Dynamics,
Theory, Algorithmics and Modeling, Implementations, Application of Evolutionary Paradigms to the Real World
(industry, biosciences, ...), other Biologically-Inspired Paradigms (Swarm, Artificial Ants, Artificial Immune Sys-
tems, Cultural Algorithms...), Memetic Algorithms, Multi-Objective Optimization, Constraint Handling, Parallel
Algorithms, Dynamic Optimization, Machine Learning and hybridization with other soft computing techniques.

Each submitted paper has been reviewed by three members of the International Program Committee. Among
the 34 submissions received, 18 papers have been selected for oral presentation and 8 other papers for poster
presentation. As for the previous editions (see LNCS volumes 1063, 1363, 1829, 2310, 2936, 3871, 4926, 5975, 7401
and 8752), a selection of the best papers presented at the conference and further revised will be published as a
volume of Springer’s LNCS series.

We would like to express our sincere gratitude to our invited speakers: Darrell Whitley and Guillaume Beslon.
The success of the conference resulted from the input of many people to whom I would like to express my

appreciation: The members of Program Committee and the secondary reviewers for their careful reviews that
ensure the quality of the selected papers and of the conference. The members of the Organizing Committee
for their efficient work and dedication assisted by Stéphane Bonnevay, Véronique Deslandres and Eric Duchene.
The members of the Steering Committee for their valuable assistance. Aurélien Dumez for his support on the
administration of the website.

I take this opportunity to thank the different partners whose financial and material support contributed to the
organization of the conference: Polytech’Lyon, University Lyon 1, ERIC, LIRIS and CNRS.

Last but not least, I thank all the authors who have submitted their research papers to the conference, and the
authors of accepted papers who attend the conference to present their work. Thank you all.

Stéphane Bonnevay

EA 2015 Chair
University of Lyon 1,

ERIC Laboratory, France

1As for previous editions of the conference, the EA acronym is based on the original French name “Évolution Artificielle”.

3

Program Committee

Aguirre Hernan - Shinshu University, Japan
Auger Anne - INRIA Saclay, France
Aupetit Sébastien - University Francois Rabelais of
Tours, France
Balev Stefan - University of Le Havre, France
Bredeche Nicolas - University Pierre et Marie Curie,
France
Bonnevay Stephane - University of Lyon 1, France
Boumaza Amine - University de Lorraine, France
Cagnoni Stefano - University of Parma, Italy
Clergue Manuel - University of the French West Indies,
France
Collet Pierre - University of Strasbourg, France
Daolio Fabio - Shinshu university, Japan
Debbat Fatima - University of Mascara, Algeria
Durand Nicolas - ENAC, Toulouse, France
Dutot Antoine - University of Le Havre, France
Ebner Marc - University in Greifswald, Germany
Emigdio Z. Flores - Institut Technologique de Tijuana
Fonlupt Cyril - University du Littoral, Calais, France
Galvan Edgar - Trinity College, Dublin, Ireland
Giacobini Mario - Molecular Biotechnology Center, U.
di Torino, Italy
Hao Jin-Kao - University of Angers, France
Idoumghar Lhassane - University of Mulhouse France
Jourdan Laetitia - University of Lille, France
Langdon Bill - University College, London, UK

Legrand Pierrick - University of Bordeaux, France
Liefooghe Arnaud - University of Lille 1, France
Lopez-Ibanez Manuel - University Libre de Bruxelles,
Belgium
Louchet Jean - INRIA Saclay, France
Lutton Evelyne - INRA, France
Marion-Poty Virginie - University of Littoral, France
Monmarché Nicolas - University Francois Rabelais of
Tours, France
Ochoa Gabriela - Stirling University, Scotland, UK
Paquete Luis - University of Coimbra, Portugal
Parkes Andrew - University of Nottingham, UK
Pereira Francisco - University of Coimbra, Portugal
Robilliard Denis - University of Littoral, France
Saubion Frederic - University of Angers, France
Schoenauer Marc - INRIA Saclay, France
Siarry Patrick - University of Paris-Est Creteil, France
Solnon Christine - INSA Lyon, France
Stutzle Thomas - IRIDIA, Bruxelles, Belgium
Talbi El-Ghazali - INRIA Lille, France
Teytaud Olivier - INRIA Saclay, France
Teytaud Fabien - University of Littoral, Calais, France
Tonda Alberto - INRA, France
Urbano Paulo - University of Lisboa, Portugal
Verel Sébastien - University du Littoral Cote d’Opale,
France

Steering Committee
Stéphane Bonnevay (Université Lyon 1)
Pierre Collet (Université Louis Pasteur de Strasbourg)
Pierrick Legrand (Université de Bordeaux)
Evelyne Lutton (INRA)
Nicolas Monmarché (Université François Rabelais de Tours)
Marc Schoenauer (INRIA)

Organizing Committee
Stéphane Bonnevay (General Chair, Local Organisation) Véronique Deslandres (Local Organisation) Eric Duchene
(Local Organisation) Aurelien Dumez (Admin Web) Gérald Gavin (Local Organisation) Laetitia Jourdan (Publicity)
Pierrick Legrand (LNCS Publication) Sébastien Vérel (Treasurer)

4

Long Papers - Oral Presentations

5

The Multi-Funnel Structure of TSP Fitness
Landscapes: A Visual Exploration

Gabriela Ochoa1, Nadarajen Veerapen1,
Darrell Whitley2, and Edmund K. Burke1

1 Computing Science and Mathematics, University of Stirling, Scotland, UK.
2 Department of Computer Science, Colorado State University, USA.

Abstract. We use the Local Optima Network model to study the struc-
ture of symmetric TSP fitness landscapes. The ‘big-valley’ hypothesis
holds that for TSP and other combinatorial problems, local optima are
not randomly distributed, instead they tend to be clustered around the
global optimum. However, a recent study has observed that, for solutions
close in evaluation to the global optimum, this structure breaks down
into multiple valleys, forming what has been called ‘multiple funnels’.
The multiple funnel concept implies that local optima are organised into
clusters, so that a particular local optimum largely belongs to a partic-
ular funnel. Our study is the first to extract and visualise local optima
networks for TSP and is based on a sampling methodology relying on the
Chained Lin-Kernighan algorithm. We confirm the existence of multiple
funnels on two selected TSP instances, finding additional funnels in a
previously studied instance. Our results suggests that transitions among
funnels are possible using operators such as ‘double-bridge’. However, for
consistently escaping sub-optimal funnels, more robust escaping mecha-
nisms are required.

1 Introduction

The structure of combinatorial fitness landscapes is known to impact the per-
formance of heuristic search algorithms. Features such as the number and distri-
bution of local optima and their basins of attraction are among the most stud-
ied. The relationship among local optima for the symmetric Traveling Salesman
Problem (TSP) under the standard 2-change neighbourhood was first analysed
in [4], where a globally convex structure was discovered. The global optimum was
found to be ‘central’ to all other local optima conforming a ‘big-valley’ struc-
ture. This is interpreted as a landscape where many local optima exists, but
they are easy to escape and the gradient, when viewed at a coarse level, leads to
the global optimum (Fig. 1). However, a more recent study has found that the
big valley structure breaks down when considering solutions near in evaluation
to the global optimum [7]. The big-valley separates into multiple valleys, con-
forming what has been called ‘multiple funnels’ in the study of energy surfaces
in chemical-physics [19]. The multi-funnel concept implies that local optima are
organised into clusters, so that a particular local optimum largely belongs to a

6

X

f(X)

Fig. 1: Depiction of the ‘big-valley’ structure.

particular funnel. The appearance of multiple funnels explains why certain it-
erated local search heuristics can quickly find high-quality solutions, but fail to
consistently find the global optimum. In a series of studies, Whitley et al. [20, 7,
21] have proposed a crossover operator (Partition Crossover), which has demon-
strated the ability to escape funnels at evaluations close to the global optimum.
A similar recombination operator [12] is used by Helsgaun [8] in the so called
LKH-solver.

This article uses the Local Optima Network (LON) model [15, 16, 14, 18] in
order to explore in more detail the structure of TSP landscapes near the global
optimum. Local optima networks compress the whole search spaces into a graph
having as vertices the local optima, and as edges transitions among them accord-
ing to a given search operator. This network-based model brings the tools from
the new science of networks [13] (e.g., metrics and visualisation) to the study of
fitness landscapes in combinatorial optimisation.

Our study considers Chained Lin-Kernighan (Chained-LK), one of the best
performing heuristic algorithms for TSP [11, 2]. Chained LK is an iterated local
search approach combining the variable depth local search of Lin and Kernighan
(LK-search) [10] with the double-bridge move [11] (a form of 4-change, depicted
in Fig. 2b) as the perturbation or ‘kick’ operator. Therefore, the proposed LON
model considers local minima according to LK-search, and transitions among
them according to the double-bridge move. Our goal is to gain a deeper under-
standing of the multi-funnel structure of the TSP under Chained-LK, which will
help in selecting and designing stronger escape mechanisms (such as Partition
Crossover [20, 21]) to avoid being trapped in a sub-optimal funnel. The main
contributions of this article are the following:

1. First study of local optima networks for TSP, including their sampling and
analysis.

2. Definition of the DLON model (distance local optima networks) and adap-
tation of the escape edges model (ELON) to TSP.

3. Network visualisation of the multi-funnel structure of TSP fitness landscapes.

7

i i + 1

jj + 1

(a) 2-change

i i + 1

j

j + 1

kk + 1

l

l + 1

(b) Double-bridge

Fig. 2: Illustration of tours obtained after 2-change or double-bridge move.

2 Local Optima Networks for TSP

For a TSP instance with n cities, the search space is the set of permutations of
the n cities. The number of tours, which equals the number of permutations, is
factorial in n. The fitness function f is given by the length of the tour, which is
to be minimised. Before presenting formal definitions in Section 2.1, we briefly
describe the following notions relevant to our model.

LK-search: The well-known Lin-Kernighan heuristic is a powerful local
search algorithm. It is based on the idea of k-change moves: take the current
tour and remove k different links from it, which are then reconnected in a new
way to achieve a legal tour. A tour is considered to be ‘k-opt’ if no k-change exists
which decreases its length. Fig. 2a illustrates a 2-change move. LK applies 2, 3
and higher-order k-changes. The order of a change is not predetermined, rather
k is increased until a stopping criterion is met. Thus many kinds of k-changes
and all 3-changes are included. There are many ways to choose the stopping
criteria and the best implementations are rather involved. We use here the im-
plementation available in the Concorde software package [1], which uses do not
look bits and candidate lists.

Double-bridge move: Proposed by Martin et al. [11] as the ‘kick’ mecha-
nism in the Chained-LK heuristic, the double-bridge move (drawn in Fig. 2b)
is a type of 4-change. It consists of two improper 2-changes, each of which is a
‘bridge’ (i.e, it takes a legal, connected tour into two disconnected parts). The
combination of both bridges, must then be chosen as to produce a legal final
tour.

Bond distance: Measures the difference between two tours t1 and t2 ac-
cording to the number of edges or ‘bonds’ that differ in both tours. Specifically,
b(t1, t2) is equal to n minus the number of edges that are present in both t1 and
t2 disregarding edge direction [4].

Our approach requires defining and extracting local optima networks for TSP
instances. To construct the networks, we need to define their nodes and edges.
Nodes will be local optima according to LK-search, and two types of weighted
edges are considered: escape edges and distance edges. The escape edges are

8

based on the number of double-bridge moves required to escape from a local
optimum, while distance edges consider the bond distance between solutions.

Since combinatorial explosion renders the full enumeration of local optima for
TSP instances of non-trivial size impossible, we resort to sampling local optima
which are close in evaluation to the global optimum. The sampling procedure is
further described in Section 2.2.

2.1 Definitions

Definition 1. A funnel floor solution is a high quality local optimum that is
conjectured to be at the bottom of a funnel. Indeed, they were called funnel
bottom solutions in [7], and are generated running Chained-LK for a large enough
number of iterations. The set of funnel floor solutions is denoted by F .

Definition 2. A funnel basin solution is a local optimum within a funnel. Each
funnel basin solution is obtained by first locating a funnel floor, and then escaping
from the funnel floor in order to discover a nearby local optimum. In this article,
this is done using a random walk with double-bridge followed by improvement
using LK-search. The set of local optima defining the funnel basins is denoted
by B. Specifically, for some x ∈ F , y ∈ Bx ⊆ B if it can be obtained from x
after a sequence of length d of double-bridge moves followed by LK-search. Since
after a double-bridge followed by LK-search the local optimum obtained y can
be equal to the starting point x, the length d of the random walk is incremented
until y 6= x.

The set of local optima, L, is the union of the funnel floors and local optima
that define the funnel basins, L = F ∪B.

Definition 3. An escape edge is a weighted edge from a funnel floor to a local
optimum. Specifically, there is an edge ex,y of weight d between the funnel floor
point x ∈ F and the local optima y ∈ B if y can be obtained from x after a
sequence of length d of double-bridge moves followed by LK-search. No self-loops
are considered. The set of escape edges is denoted by Eesc.

Definition 4. A distance edge is a weighted edge, according to the bond dis-
tance, between any two local optima. Specifically, there is an edge ex,y of weight
d between local optima x and y ∈ L if the bond distance b(x, y) = d. The set of
distance edges between any two local optima in L is denoted by Edist.

Definition 5. The Escape Local Optima Network (ELON) is the graph
ELON = (L,Eesc) where nodes are the local optima L, and edges Eesc are
the escape edges.

Definition 6. The Distance Local Optima Network (DLON) is the graph
DLON = (L,Edist) where nodes are the local optima L, and edges Edist are the
distance edges.

9

Data: I, a TSP instance
Result: F , the set of tours on the funnel floors

B, the set containing the escape tours from sampled funnel floors
F ← ∅;
for i← 1 to 10, 000 do

x← chainedLK(I, stallcount = 10, 000);
if x /∈ F then

F ← F ∪ {x};
end

end
S ← mostFrequentSolutionForEachFitnessLevel(F);
B ← ∅;
for v0 ∈ S do

Bv0 ← ∅;
for j ← 1 to 1, 000 do

i← 0;
repeat

i← i + 1;
vi ← randomDoubleBridgeMove(vi−1);
v′ ← LK(vi);

until v′ 6= v0;
Bv0 ← Bv0 ∪ {v′};

end
B ← B ∪Bv0 ;

end
Algorithm 1: TSP local optima network sampling procedure

2.2 Sampling Methodology

We apply a sampling strategy similar to that used by Hains et al. [7] where
two stages are considered. This process also resembles the one used by Iclan-
zan et al. [9] to sample the landscape of Quadratic Assignment Problem in-
stances. In the first stage, local optima of very good quality are identified which
define the funnel floors (set F defined in Section 2.1). In the second stage, ran-
dom walks are generated to escape these local optima in order to determine the
funnels’ basins (set B defined in Section 2.1). These approaches are detailed
below and through pseudocode in Algorithm 1.

The funnel floor solutions are tours obtained when Chained-LK stalls. In
practice, we determine stalling to occur when fitness does not improve for 10,000
consecutive iterations of Chained-LK. This procedure is itself repeated 10,000
times from a randomly generated initial tour and the unique tours produced are
saved in F , the set of funnel floor solutions. This procedure corresponds to the
first loop in Algorithm 1.

To determine a funnel’s basin, we identify a start point in its floor, let us call
it v0, and follow a random walk using a sequence of double bridge perturbations.
More precisely, at each step i of the random walk, a random move is performed
on vi−1, producing a tour vi. An LK-search is then applied to vi to produce a

10

locally optimal tour v′. If v′ is different from v0, then we have escaped from the
basin of attraction of v0. The random walk is stopped and its length i is the
escape distance. Tour v′ is saved in Bv0 , the set of tours having escaped from
v0. This escape procedure is repeated 1,000 times.

When there are many tours on the funnel floors, it is impractical to try to
escape from all of them. When Hains et al. [7] computed the funnels floors from
1,000 Chained-LK applications, they found that tours with the same fitness level
formed a connected component under 2-change. These could thus be considered
to form a plateau and they, therefore, randomly chose one tour to escape from
out of each plateau.

In our case, having performed 10,000 Chained-LK applications, we find many
more tours on the funnel floors and, furthermore, they are not all on 2-change
plateaus. Our approach selects the most frequently occurring solution within
each fitness level as a starting solution. Ties are broken at random.

3 Results

Our study considers two ‘milestone’ TSP instances: lin318 and att532 (as named
in TSPLIB [17], also listed in Table 1.5 from [3]). They are composed of 318 and
532 cities, and were first solved to optimality in 1980 and 1987, respectively. The
lin318 instance is a circuit board drilling example (i.e., it models the routing
of a numerically controlled drilling machine efficiently through a set of hole
positions), and was presented by Lin and Kernighan in their seminal paper
[10]. It remained the largest TSP instance solved to optimality for a span of
seven years in the 1980s. The att532 instance is comprised of pseudo-Euclidean
coordinates that go through the 532 largest cities of the USA. It is very well
known given the difficulty that the distances to the next node are very short at
the east coast, whereas in other regions of the USA they are very long.

Results are discussed in the following two subsections. Section 3.1 analy-
ses the sampled local optima and the bond and escape distances among them.
Section 3.2 visualises the escape and distance local optima networks.

3.1 Local Optima and Distances

For instance lin318, 4 unique funnel floor solutions were identified, each with
a different fitness level (Table 1). The global optimum was found in the over-
whelming majority, 96 %, of cases. The other funnel floor solutions’ fitness is
within 0.32 % of the global optimum.

When considering att532, 47 unique funnel floor solutions were identified,
distributed among 8 different fitness levels (Table 2). This is in contrast to the
20 unique solutions and 4 different fitness levels found by Hains et al. [7]. A
closer look at the data reveals that these 4 fitness levels amount to the most
frequent fitness levels in our data, comprising 99 % of the solutions found. The
seldom found solutions are therefore a result of carrying out a greater number
of Chained-LK searches to sample solutions close to the global optimum.

11

Table 1: lin318 summary data

All Sols Fitness Levels

42029 42143 42155 42163

Unique Solutions 4 1 1 1 1

Fitness Level Freq. (%) 96.02 3.59 0.09 0.30

Colour of funnel in figures P P P P

Symbol in Fig. 4a E A + �

Table 2: att532 summary data

All Sols Fitness Levels

27686 27693 27703 27704 27705 27706 27708 27715

Unique Solutions 47 2 1 8 8 13 8 5 2

Fitness Level Freq. (%) 41.78 0.04 33.17 0.65 20.69 3.58 0.07 0.02

Start Point Freq. (%) 21.35 0.04 5.80 0.16 4.64 0.57 0.03 0.01

Colour of funnel in figures P P P P P P P P

Symbol in Fig. 4b E A + � F C � S

The two globally optimal solutions account for only 42 % of all funnel floor
solutions found but all the fitnesses are within 0.10 % of the global optimum. As
previously mentioned, for att532, the starting points we try to escape from are
the most frequent funnel floor solution within each fitness level. These make up
33 % of the solutions found.

The pairwise bond distances between the starting points for both instances
are given in Fig. 3. In most cases, the pairwise distance between any two solutions
is non-trivial. For example, the bond distance between the first two best solutions
for lin318 is 37.

For att532, the smallest bond distance between start points is only 16. This
seems to be a bridgeable distance with a small number of double-bridge moves.
The starting point with fitness 27,693 only represents 0.04 % of funnel floor solu-
tions. It is at distance 16 from the start point with fitness 27,686 that constitutes
21 % of solutions found. These numbers suggest that there is a reasonable way
to move between these funnels, which explains why so few solutions with fitness
27,693 are found. This is corroborated by the local optima networks visualised
in Section 3.2.

To analyse the fitness distribution of local optima within funnels, let us con-
sider Figure 4. Dot plots of fitness versus bond distance to the global optimum
are presented for both instances. In addition, kernel density estimation distribu-
tions of points are provided.

Here our results match those of Hains et al. [7]. Firstly, local optima within
a funnel are correlated in fitness and distance to their own respective starting

12

0 37 42 45

37 0 26 27

42 26 0 30

45 27 30 0

42029

42143

42155

42163

0

10

20

30

40

Distance

(a) lin318 – 4 start points

0 16 67 71 38 86 64 50

16 0 66 70 38 81 62 49

67 66 0 18 79 33 71 65

71 70 18 0 85 25 63 70

38 38 79 85 0 72 54 40

86 81 33 25 72 0 38 50

64 62 71 63 54 38 0 31

50 49 65 70 40 50 31 0

27686

27693

27703

27704

27705

27706

27708

27715

0

20

40

60

80

Distance

(b) att532 – 8 start points

Fig. 3: Pairwise distances between funnel floor solutions for instances lin318 and
att532. Fitness levels are indicated on the left of each plot. In (a), instance lin318
has a single solution per fitness level. In (b), the most frequent solution is selected
for each fitness level of att532.

point. Secondly, there is little correlation between fitness of local optima near
the global optimum and their distance to it. However, for att532, the great
majority of the local optima observed by Hains et al. when using double-bridge
were below the 27,750 fitness level and a plot similar to ours was only obtained
when using 2-change instead of double-bridge. They therefore concluded that
double-bridge exacerbates the multi-funnel structure. We found instead that,
when comparing the two escape operators, it is 2-change that exacerbates the
multi-funnel structure. In other words, it is harder to escape funnels using 2-
change as compared to double-bridge.

Figure 5 gives the escape and pairwise bond distance distributions for both
instances. With a mean and mode of 1 for the escape distance, we can see that
the double-bridge move is highly effective in escaping from the starting points.

For bond distances, the distribution for all edges differs from the distribution
considering only edges between a start point and the solutions it escaped to. For
lin318, when considering all start points, the distribution roughly resembles a
step function with 2 steps which then quickly tapers off. The same distribution
can be observed when considering each start point separately (not shown here).
For att532, the bond distance distributions when considering a single start point
to the local optima within the funnel appear to be bimodal (not shown here) or
similar to the distribution when considering all start points. We intend to look
more closely at distributions within individual funnels in future work.

13

0.
05

0.
10

D
en

si
ty

42
00

0
42

25
0

42
50

0
42

75
0

43
00

0

0 20 40 60
Distance

Fi
tn

es
s

(a) lin318
0.

05
0.

10
D

en
si

ty
27

70
0

27
80

0
27

90
0

28
00

0
28

10
0

28
20

0

0 20 40 60 80 100
Distance

Fi
tn

es
s

(b) att532

Fig. 4: Dot plots and corresponding density distribution plots of the local optima
generated when escaping from funnel floors. Bond distance is computed w.r.t. to
the global optimum, or the most frequent of the two global optima in the case
of att532. The range of fitness values displayed is chosen to encompass at least
95 % of points. Start points are indicated by a black symbol.

3.2 Local Optima Networks

The two local optima networks models, using escape and bond distance edges,
were extracted and visualised for the two selected TSP instances. Both models
clearly suggest a multi-cluster (multi-funnel) structure (see Figure 6 explained
below). The escape edges give a network view of the search process by Chained-
LK, while the bond distance model is more general and illustrates the distribu-
tions of local optima which are close in distance.

At the heart of network visualisation is the graph layout. We use here the
Fruchterman and Reingold’s method [6] provided by the igraph package [5] for the
R statistical language. The method is based on exploiting analogies between the
relational structure in graphs and the forces among elements in physical systems.
Specifically, considering attractive and repulsive forces by associating vertices
with balls and edges with springs. The heuristic is concerned with drawing graphs
according to some generally accepted aesthetic criteria such as a) distribute the
vertices evenly in the frame, b) minimise edge crossings, c) make edge lengths
uniform, and d) reflect inherent symmetry [6].

Figure 6 visualises the two network models (escape and distance edges) on
the two studied instances. In order the make the picture manageable in size,
sub-graphs of the whole sampled networks were selected for visualisation. The
sub-graphs include all the funnel floor solutions (drawn as squares), and all the

14

0.0

0.2

0.4

0.6

0.8

1 2 3
Escape Distance

Fr
eq

ue
nc

y

From Start Points
to Escape Solutions

0.00

0.01

0.02

0.03

0 25 50 75
Bond Distance

Fr
eq

ue
nc

y

All Edges

0.00

0.01

0.02

0.03

0 25 50 75
Bond Distance

Fr
eq

ue
nc

y

(a) lin318

0.0

0.2

0.4

0.6

0.8

1 2 3 4
Escape Distance

Fr
eq

ue
nc

y

From Start Points
to Escape Solutions

0.000

0.005

0.010

0.015

0.020

0 50 100 150
Bond Distance

Fr
eq

ue
nc

y

All Edges

0.000

0.005

0.010

0.015

0.020

0 50 100 150
Bond Distance

Fr
eq

ue
nc

y
(b) att532

Fig. 5: Escape and bond distance distributions. The most frequent escape dis-
tance is 1. The maximum escape distance is 4 on att532, but occurred only once.

solutions that we call frontier nodes (drawn in black). These frontier nodes are
those that can be attained from more than one funnel start point by the escaping
mechanisms (i.e., a sequence of double bridge moves followed by LK-Search). The
colour of the remaining nodes indicates the funnel (fitness level) membership (as
indicated in Tables 1 and 2 for lin318 and att532, respectively) with the red
colour identifying the funnel of the global optimum. For the lin318 instance,
10 % of the funnel basin points were selected for visualisation. This percentage
was 5 % for the larger att532 instance. All the escape edges are visualised, with
darker grey indicating edges with escape distance 1. Visualising all bond distance
edges is not feasible, so we set a threshold of 1/10 of the maximum distance to
the global optimum in the sampled points (i.e., there is an edge if the distance
between nodes is below the given threshold). This threshold was a distance of 9
for lin318 and 14 att532. Again the darker grey identifies edges with the minimum
distance.

The multi-funnel structure can be visualised in the network plots in Fig-
ure 6, which separate in clearly defined clusters of solutions. The lin318 instance
features 4 clusters, while att532 has 8 clusters. The clusters are more clearly de-
fined for the escape edges, but interestingly, the same overall structure appears
for the distance edges. It is interesting to observe that some points (drawn in
black) ‘belong’ to more than one funnel. That is, they can be reached from more
than one funnel floor by double-bridge moves followed by LK-search. Therefore,
it is possible for Chained-LK to escape some funnels, but it seems difficult for it
to consistently escape from all funnels.

15

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

(a) lin318 – Escape Edges

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

(b) lin318 – Distance Edges

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

(c) att532 – Escape Edges

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

(d) att532 – Distance Edges

Fig. 6: Visualisation of Local Optima Networks for lin318 (top) and att532 (bot-
tom). Both networks models, using escape and distance edges, are visualised.
Nodes are local optima and edges represent escape or distance edges (with a
set threshold), respectively. Square nodes represent solutions that belong to the
funnel floors, while circle nodes to funnel basins. The larger square nodes (in red)
are the global optima. Colours identify the different funnels (or fitness levels)
as indicated in Tables 1 and 2. The black nodes are ‘frontier’ points, i.e., points
that can be reached from more than one funnel.

16

An interpretation of the effectiveness of Chained-LK may be obtained when
considering the local optima networks together with the fitness levels of the start
points of each funnel, their frequency when sampling the funnel floors and the
pairwise bond distance between start points.

For lin318, the two connected funnels are the ones whose start points have
fitness 42,143 and 42,155 and were sampled 3.59 % and 0.09 % of the time re-
spectively. They are also the two closest start points for lin318, with a distance
of 26. For att532, as was observed in Section 3.1, start points with fitness 27,686
and 27,693 are at a distance of 16 and constitute 21.35 % and 0.04 % of sampled
funnel floors. They are at a bond distance of 16 to each other and their corre-
sponding funnels are linked in the local optima networks. The start point with
fitness 27,703 (5.80 %) is connected to the start point with fitness 27,704 (0.16 %
and distance 18). While these three observations are not sufficient to draw broad
conclusions, an initial interpretation is that ‘close enough’ start points exhibit
funnels that are linked to each other. Furthermore, when two funnels are con-
nected, it is highly probable that the search will end up in the funnel with the
funnel floor with better fitness.

The start point with fitness 27,703 is also connected to the one with fitness
27,706 (0.57 % and distance 33), but through two other floor solutions (indicated
by black squares in the figure) that were not used as start points. These two floor
solutions are also of fitness 27,703 and 27,706 and are only at a bond distance
of two from the start point with the same fitness.

4 Conclusions

We have implemented a sampling procedure to extract local optima networks
for TSP instances. In particular, we studied the search space structure close
to the global optimum and confirmed the existence of multiple funnels. Our
study is the first to analyse local optima networks for TSP and provide a clear
visualisation of its multi-funnel structure. The proposed distance local optima
network model is a contribution of this article, which may find easy application
in other combinatorial optimisation problems.

Our analysis considered the well-known Chained-LK heuristic as implemented
in the Concorde software package. Chained-LK is an iterated local search ap-
proach combining LK-search with double-bridge as the perturbation or escape
operator. On two selected TSP instances, we found that while some funnels
are directly connected to other funnels via double-bridge escape moves, most
of them are not. This gives a visual insight of why Chained-LK produces sub-
optimal solutions in some runs, and justify the multiple restarts used in the
default Concorde implementation. We hypothesise that when Chained-LK pro-
duces sub-optimal solutions, it is because it gets trapped in a sub-optimal funnel
and the double-bridge escape mechanism, while generally efficient to escape local
optima, is not strong enough to escape some funnels. Future work will explore
alternative funnel-escape mechanisms such as the recently proposed Partition
Crossover [20, 21], and will study Tunneling Crossover Networks for TSP [14].

17

Acknowledgements. This work was supported by the UK’s Engineering and
Physical Sciences Research Council [grant number EP/J017515/1].

Data Access. All data generated during this research are openly available from
the Zenodo repository (http://doi.org/10.5281/zenodo.20732).

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003),
http://www.math.uwaterloo.ca/tsp/concorde.html

2. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for Large Traveling
Salesman Problems. INFORMS Journal on Computing 15, 82–92 (2003)

3. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press (2007)

4. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique
for combinatorial global optimizations. Operations Research Letters 16, 101–113
(1994)

5. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems, 1695 (2006)

6. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software Practice Exper. 21(11), 1129–1164 (Nov 1991)

7. Hains, D.R., Whitley, L.D., Howe, a.E.: Revisiting the big valley search space
structure in the TSP. Journal of the Operational Research Society 62(2), 305–312
(2011)

8. Helsgaun, K.: An effective implementation of the LinKernighan traveling salesman
heuristic. European Journal of Operational Research 126(1), 106–130 (Oct 2000)

9. Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven Local Optima Network Char-
acterization of QAPLIB Instances. In: Proceedings of the 2014 Conference on Ge-
netic and Evolutionary Computation. pp. 453–460. GECCO ’14, ACM, New York,
NY, USA (2014)

10. Lin, S., Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research 21, 498–516 (1973)

11. Martin, O., Otto, S.W., Felten, E.W.: Large-Step Markov Chains for the Traveling
Salesman Problem. Complex System 5, 299—-326 (1991)

12. Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial optimization by
iterative partial transcription. Physical Review E 59(4), 4667–4674 (Apr 1999)

13. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford,
UK (2010)

14. Ochoa, G., Chicano, F., Tinos, R., Whitley, D.: Tunnelling crossover networks. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
pp. 449–456. ACM (2015)

15. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’
basins and local optima networks. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). pp. 555–562. ACM (2008)

16. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: A new
model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.)
Recent Advances in the Theory and Application of Fitness Landscapes, Emer-
gence, Complexity and Computation, vol. 6, pp. 233–262. Springer Berlin Heidel-
berg (2014)

18

17. Reinelt, G.: Tsplib—a traveling salesman problem library. ORSA Journal on
Computing 3(4), 376–384 (1991), http://www.iwr.uni-heidelberg.de/groups/

comopt/software/TSPLIB95/

18. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Transactions on Evolutionary Computation 15(6), 783–797 (2011)

19. Wales, D.J., Miller, M.a., Walsh, T.R.: Archetypal energy landscapes. Nature
394(August), 758–760 (1998)

20. Whitley, D., Hains, D., Howe, A.: Tunneling Between Optima: Partition Crossover
for the Traveling Salesman Problem. In: Proceedings Genetic and Evolutionary
Computation Conference. pp. 915–922. GECCO ’09, ACM, New York, NY, USA
(2009)

21. Whitley, D., Hains, D., Howe, A.: A hybrid genetic algorithm for the traveling sales-
man problem using generalized partition crossover. In: Parallel Problem Solving
from NaturePPSN XI. pp. 566–575 (2010)

19

20

Approaches for Many-objective Optimization:
Analysis and Comparison on MNK-landscapes

Hernán Aguirre1, Saúl Zapotecas1, Arnaud Liefooghe2, Sébastien Verel3, and
Kiyoshi Tanaka1

1 Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 JAPAN

2 Université Lille 1 LIFL, UMR CNRS 8022, France
Inria Lille-Nord Europe, France

3 Université du Littoral Côte d’Opale, LISIC, 62228 Calais, France
{ahernan,ktanaka}@shinshu-u.ac.jp arnaud.liefooghe@lifl.fr verel@univ-littoral.fr

Abstract. This work analyses the behavior and compares the perfor-
mance of MOEA/D, IBEA using the binary additive ε and the hyper-
volume difference indicators, and AεSεH as representative algorithms of
decomposition, indicators, and ε-dominance based approaches for many-
objective optimization. We use small MNK-landscapes to trace the dy-
namics of the algorithms generating high-resolution approximations of
the Pareto optimal set. Also, we use large MNK-landscapes to analyze
their scalability to larger search spaces.

1 Introduction

Recently, several algorithms are being proposed for many-objective optimization.
Preferred approaches to implement selection in many-objective optimization are
decomposition, performance indicators, and relaxations of Pareto dominance.

Decomposition based algorithms [1, 2] break down the many-objective prob-
lem into a large number of single-objective problems using scalarizing functions.
The single objective problems are then solved concurrently. The scalarizing func-
tions are usually defined in advance and remain fixed during the search. To cre-
ate a set of scalarizing functions we assume a distribution of the Pareto optimal
front and the algorithm aims to find good solutions that match our assump-
tions on distribution. Indicator based algorithms use a performance indicator
function to assess the quality of a set of solutions. These algorithms optimize a
single-objective function aiming to find the best subset of Pareto non-dominated
solutions according to the performance indicator [3–5]. Popular indicators are
additive ε, hypervolume, and R2. Relaxations of Pareto dominance modify the
dominance relation to discern between initially incomparable solutions. One ef-
fective approach to relax Pareto dominance is ε-dominance [6]. ε-dominance
based algorithms expand the area of dominance of some non-dominated solutions
using a mapping function that depends on a parameter ε. These algorithms use
ε-dominance principles to update the archive [7] or sample the instantaneous

21

2

population [8] in order to keep a subset of solutions spaced with the resolu-
tion induced by the ε mapping function. These three different approaches have
led to many-objective algorithms that perform significantly better than conven-
tional multi-objective algorithms on many-objective problems. However, there
is not much work comparing them in a rigorous way and their dynamics solving
many-objective problems is not yet fully understood.

This work analyses the behavior of representative algorithms that imple-
ment the above three main approaches for selection, namely the decomposi-
tion based MOEA/D, the indicator based IBEA using the binary additive ε-
indicator and the binary hypervolume difference-indicator, and the ε-dominance
based AεSεH. As reference, it also includes results by NSGA-II [9]. First, we use
MNK-landscapes with 20 bits to trace the dynamics of the algorithms finding
new optimal solutions and compare their performance generating high-resolution
approximations of the Pareto optimal set. Then we use MNK-landscapes with
100 bits and analyze their scalability to larger search spaces. This work reveals
important strengths and limitations of these algorithms for many-objective op-
timization, explaining their behavior and performance when convergence and
diversity of the approximation is considered.

2 Algorithms

2.1 MOEA/D (Multiobjective EA Based on Decomposition)

MOEA/D [2] is a decomposition-based EMO algorithm that seeks high-quality
solutions in multiple regions of the objective space by decomposing the original
(multi-objective) problem into a number of scalarizing (single-objective) sub-
problems. MOEA/D defines a neighboring relation among sub-problems, based
on the assumption that a given sub-problem is likely to benefit from the current
solutions maintained in the corresponding neighboring sub-problems. More par-
ticularly, let µ be the user-defined number of sub-problems. A set (λ1, . . . , λi, . . . ,
λµ) of uniformly-distributed weighting coefficient vectors defines the scalarizing
sub-problems, and a population P = (x1, . . . , xi, . . . , xµ) is maintained such that
each individual xi maps to the current solution of the corresponding sub-problem
defined by λi. In addition, a set of neighbors Neig(i) is defined by considering
the T closest weighting coefficient vectors for each sub-problem i (including it-
self), i ∈ {1, . . . , µ}. At each iteration, the population evolves with respect to a
given sub-problem i. Two solutions are selected at random from Neig(i) and an
offspring is produced by means of crossover and mutation operators. Then, for
each sub-problem j ∈ Neig(i), the offspring x is used to replace the current so-
lution xj if there is an improvement in terms of the defined scalarizing function.
The algorithm iterates over sub-problems until a stopping condition is satisfied.

Different scalarizing functions can be used within MOEA/D. In this paper,
we use the weighted Chebyshev metric defined below.

g(x, λ) = max
i∈{1,...,m}

λi ·
∣∣z?i − fi(x)

∣∣ (1)

22

3

such that x belongs to the solution space, λ is a weighting coefficient vector and
z? is a reference point.

2.2 IBEA (Indicator-Based Evolutionary Algorithm)

IBEA [3] tries to introduce a total order between solutions by means of an
arbitrary binary quality indicator I. The fitness assignment scheme of IBEA
is based on a pairwise comparison of solutions in a population with respect to
indicator I. Each individual x is assigned a fitness value measuring the “loss in
quality” in the population P if x was removed from it as follows

Fitness(x) =
∑

x′∈P\{x}
(−e−I(x′,x)/κ), (2)

where κ > 0 is a user-defined scaling factor. Survival selection is based on an
elitist strategy that combines the current population Pt with its offspring Qt,
iteratively deletes worst solutions until the required population size is reached,
and assigns the resulting population to P(t+1). Here, each time a solution is
deleted the fitness values of the remaining individuals are updated. Parent selec-
tion for reproduction consists of binary tournaments between randomly chosen
individuals using their fitness to decide the winners.

Several indicators can be used within IBEA. Here we choose to use the bi-
nary additive ε-indicator (Iε+) and the binary hypervolume difference-indicator
(IHD), as defined by the original authors [3].

Iε+(x,x′) = max
i∈{1,...,n}

{fi(x)− fi(x′)} (3)

IHD(x,x′) =

{
H(x′)−H(x) if x′ � x or x � x′

H(x + x′)−H(x) otherwise
(4)

where x � x′ indicates x Pareto dominates x′. Iε+(x,x′) gives the minimum
value by which a solution x ∈ Pt has to, or can be translated in the objective
space in order to weakly dominate another solution x′ ∈ Pt. H(x) give the mul-
tidimensional volume of the objective space that is dominated by x. IHD(x,x′)
gives the hypervolume that is dominated by x′ but not by x, x,x′ ∈ Pt. More
information about IBEA can be found in [3].

2.3 The AεSεH

Adaptive ε-Sampling and ε-Hood (AεSεH) [8] is an elitist evolutionary many-
objective algorithm that applies ε-dominance principles for survival and parent
selection. There is not an explicit fitness assignment method in this algorithm.

Survival selection joins the current population Pt and its offspring Qt and
divide it in non-dominated fronts F = {Fi}, i = 1, 2, · · · , NF using the non-
dominated sorting procedure. In the rare case where the number of non-dominated
solutions is smaller than the population size |F1| < |P |, the sets of solutions Fi

23

4

are copied iteratively to Pt+1 until it is filled; if set Fi, i > 1, overfills Pt+1, the
required number of solutions are chosen randomly from it. On the other hand, in
the common case where |F1| > |P |, it calls ε-sampling with parameter εs. This
procedure iteratively samples randomly a solution from the set F1, inserting the
sample in Pt+1 and eliminating from F1 solutions ε-dominated by the sample.
After sampling, if Pt+1 is overfilled solutions are randomly eliminated from it.
Otherwise, if there is still room in Pt+1, the required number of solutions are
randomly chosen from the initially ε-dominated solutions and added to Pt+1.

For parent selection the algorithm first uses the procedure ε-hood creation to
cluster solutions in objective space. This procedure randomly selects an individ-
ual from the surviving population and applies ε-dominance with parameter εh. A
neighborhood is formed by the selected solution and its εh-dominated solutions.
Neighborhood creation is repeated until all solutions in the surviving population
have been assigned to a neighborhood. Parent selection is implemented by the
procedure ε-hood mating, which sees neighborhoods as elements of a list that
are visited one at the time in a round-robin schedule. The first two parents are
selected randomly from the first neighborhood in the list, the next two parents
are selected randomly from the second neighborhood, and so on. When the end
of the list is reached, parent selection continues with the first neighborhood in
the list. Thus, all individuals have the same probability of being selected within a
specified neighborhood, but due to the round-robin schedule individuals belong-
ing to neighborhoods with fewer members have more reproduction opportunities
that those belonging to neighborhoods with more members.

Both epsilon parameters εs and εh used in survival selection and parent
selection, respectively, are dynamically adapted during the run of the algorithm.
Further details about AεSεH can be found in [8].

3 Test problems, performance measures, and algorithms
parameters

To evaluate the algorithms we use small and large MNK-landscapes [10] ran-
domly generated with M = 3, 4, 5, 6 objectives. The small landscapes are defined
with N = 20 bits and K = 1 epistatic bit (5%). We enumerate these landscapes
and analyze the dynamics of the algorithms respect to the optimum set. The
size of the Pareto optimal set (POS) found by enumeration and the number of
non-dominated fronts are shown in Table 1 under columns |POS| and Fronts,
respectively. The same table also shows the corresponding fraction (%) of the
population sizes |P | to the |POS| for various population sizes investigated. Also,
we define large landscapes with N = 100 bits and K = 5 epistatic bits (5%) and
use them to study the scalability of the algorithms to larger search spaces.

We run the algorithms for a fixed number of T generations, collecting in
separate files the sets of non-dominated solutions F1(t) found at each generation.
The approximation of the POS for a run of the algorithm, denoted A(T), is
built by computing the non-dominated set from all generational non-dominated
sets F1(t), t = 0, 1, · · · , T , making sure no duplicate solutions are included. In

24

5

Table 1. Size of the Pareto optimal set |POS| and number of Fronts in the landscapes
with M = 3, 4, 5, and 6 objectives, N = 20 bits, and K = 1 epistatic bit. Fractions |P |
/ |POS| of population size to the size of the POS (in %) investigated in this study.

|P | / |POS| (%)
M |POS| Fronts 50 100 200

3 152 258 32.9 65.8 132.6
4 1,554 76 3.2 6.4 12.9
5 6,265 29 0.8 1.6 3.2
6 16,845 22 0.3 0.6 1.2

general, the approximation at generation t is given by

X (t) = {A(t− 1) ∪ F1(t) \ A(t− 1) ∩ F1(t)} (5)

A(t) = {x : x ∈ X (t)∧ 6 ∃y ∈ X (t) y � x} (6)

A(0) = F1(0), (7)

where y � x denotes solution y Pareto dominates solution x.
For small landscapes we report the basic resolution index α of the approxi-

mation at generation t [11], expressed by

α(t) =
|{x : x ∈ A(t) ∧ x ∈ POS}|

|POS| , (8)

which gives the fraction of the accumulated number of Pareto optimal (PO)
solutions found until generation t to the size of the POS. The highest resolution
of the generated approximation of the POS is achieved when all Pareto optimal
solutions are found. We also report three generational search assessment indices
[11], the fraction τ+t of Pareto optimal solutions in the population at generation t
that are new respect to the previous generation, the fraction δt of Pareto optimal
solutions dropped at generation t, and the fraction γt of non-dominated solutions
in the population that are not Pareto optimal solutions at generation t. Table 2
summarizes these indices.

For landscapes with N = 100 bits, where the Pareto optimal set is unknown,
we compute the non-dominated reference set R from the solutions found by
all algorithms. We report the Inverse Generational Distance (IGD) between
the approximation A(T) found by the algorithms and the reference set R. In
addition, we also report the coverage C metric between the approximations A(T)
found by the algorithms.

All algorithms use two point crossover with rate pc = 1.0, and bit flip mu-
tation with rate pm = 1/N . In MOEA/D we use the Tchebycheff scalarizing
function, as mentioned above, set the neighborhood size to 10, as suggested
for knapsack problems in the original implementation of MOEA/D. The set of
weights vectors is generated according to the methodology presented in [12],
which projects the discrepancy given by a set of points contained in a (k − 1)-
dimensional unit cube into a (k − 1)-simplex that defines the set of weights

25

6

Table 2. Generational search-assessment indices It. Measures are taken on non-
dominated population F1(t) with respect to F1(t − 1) and/or the POS, normalized
by population size |P |.

It Formula Comment

τ+t |{x : x ∈ F1(t) ∧ x 6∈ F1(t− 1) ∧ x ∈ POS}| / |P | Possibly new PO solutions
δt |{x : x ∈ F1(t− 1) ∧ x 6∈ F1(t) ∧ x ∈ POS}| / |P | Dropped PO solutions
γt |{x : x ∈ F1(t) ∧ x 6∈ POS}| / |P | Non-dominated, not PO sol.

vectors. One advantage of using this strategy is that we can define a well-
distributed set of weights vectors (in terms of low discrepancy) without depend-
ing of any constant as conventional methodologies do (see e.g. [2]) and regardless
of the dimension of the weights vectors. In AεSεH we set the reference neigh-

borhood size HRef
size to 20 individuals. The mapping function f(x) 7→ε f

′
(x)

used for ε-dominance in ε-sampling truncation and ε-hood creation is additive,
f

′
i = fi + ε, i = 1, 2, · · · ,m. For IBEA, we observe the behavior of the algorithm

setting the scaling factor to κ = 0.05 suggested in [3] and κ = 0.001. IBEA finds
considerably fewer optimal solutions if κ = 0.05. Here we report results obtained
setting κ = 0.001. The algorithms run for T = 100 generations with population
sizes |P | = {50, 100, 200} on landscapes with N = 20 bits and for T = 1000
generation with population size |P | = 1000 on landscapes with N = 100 bits.
Results analyzed here were obtained from 30 independent runs of the algorithms.

4 Experimental Results and Discussion

4.1 Small landscapes

First, we analyze the basic resolution index α(T) of the approximation at the
end of the run, i.e. the ratio of accumulated number of PO solutions found to
the size of the POS. Results for all algorithms are shown in Fig.1 for 3, 4, 5,
and 6 objectives using population sizes of {50, 100, 200}. For convenience the
algorithms are labeled as A, Ie, Ihv, M, and N and correspond to AεSεH, IBEA
Iε+, IBEA IHD, MOEA/D, and NSGA-II, respectively.

For M = 3 objectives, note that AεSεH finds more Pareto optimal solutions
than the other algorithms for the three population sizes tried here. MOEA/D
finds more Pareto optimal solutions than NSGA-II for population size 50, but
the contrary is true for population sizes 100 and 200. IBEA Iε+ and IHD find
consistently fewer Pareto optimal solutions than the other algorithms. In M = 3
the ratios of population size to the size of the Pareto optimal set are |P|/|POS| ∼
{33, 66, 133} (%) for |P | = {50, 100, 200}, respectively. That is, the population
size is relatively large compared to the Pareto optimal set. In this case, note that
the difference in the resolution achieved by the algorithms reduces considerably
as the ratio |P|/|POS| increases to very large values.

On the other hand, for 4, 5 and 6 objectives, note that overall MOEA/D finds
more Pareto optimal solutions than the other algorithms, followed by AεSεH.
NSGA-II scales up badly in the number of objectives and becomes similar or

26

7

0.5

0.6

0.7

0.8

0.9

1.0

A Ie Ihv M N A Ie Ihv M N A Ie Ihv M N

50 100 20050 100 20050 100 20050 100 20050 100 200

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
T

P
o
s
 /
 |
T

P
o
s
|

Algorithm and Population Size

(a) M=3 objectives

0.1

0.2

0.3

0.4

0.5

0.6

A Ie Ihv M N A Ie Ihv M N A Ie Ihv M N

50 100 20050 100 20050 100 20050 100 20050 100 200

0.1

0.2

0.3

0.4

0.5

0.6

A
c
c
T

P
o
s
 /
 |
T

P
o
s
|

Algorithm and Population Size

(b) M=4 objectives

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A Ie Ihv M N A Ie Ihv M N A Ie Ihv M N

50 100 20050 100 20050 100 20050 100 20050 100 200

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
c
c
T

P
o
s
 /
 |
T

P
o
s
|

Algorithm and Population Size

(c) M=5 objectives

0.05

0.10

0.15

0.20

A Ie Ihv M N A Ie Ihv M N A Ie Ihv M N

50 100 20050 100 20050 100 20050 100 20050 100 200

0.05

0.10

0.15

0.20

A
c
c
T

P
o
s
 /
 |
T

P
o
s
|

Algorithm and Population Size

(d) M=6 objectives

Fig. 1. Resolution of the approximation at the end of the run α(T), i.e. ratio of accu-
mulated number of Pareto optimal solutions found to the size of the POS. Population
sizes 50, 100, and 200 for 3, 4, 5, and 6 objectives. Algorithms AεSεH (A), IBEA Iε+
(Iε), IBEA IHD (Ihv), NSGA-II (N) and MOEA/D (M).

worse than IBEA Iε+ and IBEA IHD. In M = 4 the ratios are |P|/|POS| ∼
{3.2, 6.4, 12.9} (%). In this case the advantage of MOEA/D over AεSεH seen
for ratios 6.4% and 3.2% disappears for the ratio 12.9% (|P = 200|). In M = 5
and M = 6 the ratios |P|/|POS| used in our experiments are around {0.8, 1.6,
3.2} (%) and {0.3, 0.6, 1.2} (%). These ratios are quite small and the superiority
of MOEA/D to achieve a better resolution is undisputed.

In 3, 4, and 5 objectives landscapes with N = 20 bits the algorithms can
hit easily the Pareto optimal set after few generations. In M = 6 there are few
optimal solutions even in the random initial population. Therefore, the above
results reflect mostly the ability of the algorithms to continue discovering Pareto
optimal solutions once they hit the Pareto optimal set.

In the following we analyze the dynamics of the algorithms for M = 3 ob-
jectives with population size |P | = 50, where |P | is 32.9% of the |POS|, and for
M = 6 with |P | = 200, where |P | is 1.2% of the |POS|. Our aim is to understand
the behavior of the algorithms under small and large ratios |P |/|POS| and ex-
plain how the algorithms achieve the resolutions observed in Fig.1. This analysis
will also help understand how the scalability to larger search spaces could be
affected by the dynamics of the algorithms.

27

8

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

0.20

Generation

In
P

N
e
w

 /
 |
P

|

(a) AεSεH, |P |=50, M=3

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

0.20

0.25

Generation

In
P

N
e
w

 /
 |
P

|

(b) AεSεH, |P |=200, M=6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Generation

In
P

N
e
w

 /
 |
P

|

(c) MOEA/D, |P |=50, M=3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Generation

In
P

N
e
w

 /
 |
P

|

(d) MOEA/D, |P |=200, M=6

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

0.20

Generation

In
P

N
e
w

 /
 |
P

|

(e) IBEA IHD, |P |=50, M=3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Generation

In
P

N
e
w

 /
 |
P

|

(f) IBEA IHD, |P |=200, M=6

Fig. 2. Pareto optimal solutions in the population that are new respect to the previous
generation. Population sizes 50 and 200 for 3 and 6 objectives, respectively. Algorithms
AεSεH, MOEA/D, and IBEA IHD.

Fig.2 shows the fraction τ+t of Pareto optimal solutions that are new in
the population respect to the previous generation. That is, τ+t includes Pareto
optimal solutions that are being rediscovered and also those seen for the first
time. Note that τ+t in AεSεH and MOEA/D peak during the initial generations
and remain close to its peak value throughout the generations. However, τ+t in
AεSεH is smaller than in MOEA/D (around half), both in M = 3 with |P | = 50
(32.9% of the |POS|) and M = 6 with |P | = 200 (1.2% of the |POS|). In
the case of IBEA, after τ+t has reached its peak rapidly drops to a very small

28

9

0.00

0.05

0.10

0.15

0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

Generation

D
ro

p
p
e
d
 /
 |
P

|

(a) AεSεH, |P |=50, M=3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Generation

D
ro

p
p
e
d
 /
 |
P

|

(b) AεSεH, |P |=200, M=6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40 50 60 70 80 90 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Generation

D
ro

p
p
e
d
 /
 |
P

|

(c) MOEA/D, |P |=50, M=3

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

Generation

D
ro

p
p
e
d
 /
 |
P

|

(d) MOEA/D, |P |=200, M=6

Fig. 3. Pareto optimal solutions dropped from the population. Population sizes 50 and
200 for 3 and 6 objectives, respectively. Algorithms AεSεH and MOEA/D.

value, indicating that IBEA rediscovers and/or finds very few new Pareto optimal
solutions after 30 generations.

Fig.3 shows the ratio δt of Pareto optimal solutions in the population that
are dropped over the generations. These dropped solutions are replaced by other
non-dominated solutions, optimal or not. Note that the trends of the curves are
similar to those of τ+t shown in Fig.2. MOEA/D drops almost three times as
many Pareto optimal solutions as AεSεH in both cases, M = 3 with |P | = 50
(32.9% of |POS|) and M = 6 with |P | = 200 (1.2% of |POS|). IBEA drops
very few solutions, particularly after the algorithm has evolved few generations
(results are not included here due to space limitations).

Fig.4 shows the ratio γt of solutions that are non-dominated in the population
but are not Pareto optimal. Note that γt in AεSεH is larger than in MOEA/D
during the initial 20 or 10 generations, where the algorithms are approaching
the optimal front and few solutions in the population are expected to be Pareto
optimal. However, after this initial period, when a significant number of Pareto
optimal solutions should have accumulated in the population γt is three times
higher in MOEA/D than in AεSεH.

To summarize, whether the fraction |P |/|POS| is small or large, MOEA/D
discovers and rediscovers more Pareto optimal solutions than AεSεH. However,
MOEA/D also drops more optimal solutions than AεSεH and includes in its

29

10

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

Generation

N
D

o
m

N
P

o
s
 /
 |
P

|

(a) AεSεH, |P |=50, M=3

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

Generation

N
D

o
m

N
P

o
s
 /
 |
P

|

(b) AεSεH, |P |=200, M=6

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

Generation

N
D

o
m

N
P

o
s
 /
 |
P

|

(c) MOEA/D, |P |=50, M=3

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

Generation

N
D

o
m

N
P

o
s
 /
 |
P

|

(d) MOEA/D, |P |=200, M=6

Fig. 4. Non-dominated solutions in the population that are not Pareto optimal. Pop-
ulation sizes 50 and 200 for 3 and 6 objectives. Algorithms AεSεH and MOEA/D.

population a larger number of non-dominated non-Pareto optimal solutions than
AεSεH. The discovery of new Pareto optimal solutions together with the ability
to drop and replace them with other Pareto optimal solutions can be seen as
an exploitative feature of the algorithm to continue reaching optimal solutions
from optimal solutions. However, Pareto optimal solutions are also replaced with
non-optimal solutions. In this case, the algorithm steps down to inferior solutions
and tries to climb back again. This feature is more explorative and could help
the algorithm to scape local optima, or to reach optimal solutions that cannot
be reached easily from other optimal solutions. These two features are observed
in both MOEA/D and AεSεH. However, the indices explored here suggest that
exploration in MOEA/D is more intense than in AεSεH. The better approxi-
mation achieved by AεSεH on 3 objectives, where there are more fronts to be
climbed towards the Pareto optimal set, and the better approximations achieved
by MOEA/D on larger number of objectives, where there are less fronts to be
climbed, are an indication that this explorative feature could impact greatly the
performance of the algorithm. In larger search spaces, it is not so simple to hit
the Pareto optimal set. There, too much exploration could be detrimental to the
performance of the algorithm.

An important question is how the algorithms come to drop Pareto optimal
solutions from the population, particularly in favor of inferior solutions. In dom-

30

11

inance based algorithms this could happen during truncation when the number
of non-dominated solutions obtained from the combined population of parents
and offspring is larger than the size of the population. The scope of the Pareto
relation between solutions is the population, and not all points in the landscape.
Thus, solutions that appear non-dominated in the population may actually be
dominated by other solutions in the landscape. For example, when the algorithm
hits parts of the optimal front, even if some solutions in the combined population
of parents and offspring are optimal others may be suboptimal and still appear
non-dominated. In this case, Pareto optimal solutions could be dropped in favor
of suboptimal solutions when the subset of surviving solutions is selected, be-
cause a dominance based algorithm cannot distinguish between non-dominated
solutions. It is important to emphasize that although inferior solutions in the
landscape may appear non-dominated by an optimal solution (superior solutions
in general) in the population, dominance never reduces the rank of an optimal
solution. In general, dominance never reduces the rank of solutions that are
superior in the landscape (in the Pareto sense).

In the case of decomposition algorithms, by definition there is a different func-
tion for each sub-problem that provides a more strict order between solutions.
In a combinatorial problem, the optimal solution for a sub-problem is hopefully
a Pareto optimal solution. Other solutions are inferior, even if they are Pareto
optimal in the multi-objective landscape. In general, from the Pareto dominance
perspective, solutions that are superior in the multi-objective landscape could be
ranked lower than inferior solutions. This is an important difference with domi-
nance based approaches. When the algorithm hits the Pareto optimal set, each
optimal solution in the population will be associated to one or few subproblems.
These Pareto optimal solutions could be dropped in favor of a solution with
higher rank in the subproblem, whether this better ranked solution is superior
or not in the Pareto sense.

In the case of IBEA, the algorithm tries to introduce a total order between
solutions giving higher rank to solutions located towards the ideal point. Thus,
IBEA tends to converge towards the subset of solutions with highest rank located
in the central region of objective space, which cardinality is the size of the
population. Once there, the continuous sampling from that subset could lead to
discover other Pareto optimal solutions. However, they will have a rank inferior
to those in the population and thus are not eligible to replace optimal solutions.
After a while, the algorithm cannot find new solutions from the same set and
stagnates. Due to the total order, this algorithm includes features that can help
convergence in larger subspaces, thought diversity could still be an issue.

4.2 Large landscapes

In this section we present results of the algorithms on landscapes with N = 100
bits in order to analyze their scalability to larger search spaces. Fig.5 and Fig.6
show the inverse generational distance IGD of the approximation obtained by
the algorithms and the coverage C metric between the approximations of AεSεH
and the other algorithms, respectively. For these problems we don’t know the

31

12

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

0
.0

4
0

0
.0

4
5

A Ie+ Ihv M N

Algorithm

IG
D

(a) M=3 objectives

0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6

A Ie+ Ihv M N

Algorithm

IG
D

(b) M=4 objectives

0
.0

4
0
.0

6
0
.0

8
0
.1

0

A Ie+ Ihv M N

Algorithm

IG
D

(c) M=5 objectives

0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

A Ie+ Ihv M N

Algorithm

IG
D

(d) M=6 objectives

Fig. 5. IGD. Algorithms AεSεH (A), IBEA Iε+ (Iε+), IBEA IHD (IHD), NSGA-II (N)
and MOEA/D (M).

Pareto optimal set, so we compute IGD taking as reference the non-dominated
set obtained from the non-dominated solutions found by all algorithms.

First, looking at IGD in Fig.5, note that AεSεH achieves better (lower) IGD
than the other algorithms in 3, 4, 5 and 6 objectives. In 3 objectives, IBEA Iε+ ,
IBEA IHD, MOEA/D and NSGA-II achieve similar IGD. However, for M > 3
objectives IBEA Iε+ is the second best algorithm in terms of IGD. For M = 4
and M = 5 there is not much difference between IBEA IHD and MOEA/D.
However, for M = 6 MOEA/D is significantly better than IBEA IHD. NSGA-II
is overall the worst algorithm

Next, looking at coverage C in Fig.6, note that for M = 3 C(A,·) > C(·,A)
for all algorithms Ie+, Ihv, M, and N. This indicates that solutions of AεSεH
dominate more solutions of the other algorithms and fewer solutions of AεSεH
are dominated by solutions of the other algorithms. Increasing the number of ob-
jectives above 3, the dominance gap between AεSεH and MOEA/D and between
AεSεH and NSGA-II increase. However, fewer solutions by IBEA algorithms are
dominated by AεSεH. For example in M = 6 objectives, in average around 3%
of IBEA IHD’s solutions are dominated by AεSεH and around 20% of AεSεH’s
solutions are dominated by IBEA IHD. Between the two IBEA algorithms, C is
slightly better for IHD than for Iε+. This however depends strongly on the value
set for κ in IBEA.

32

13

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(A, Ie+) (Ie+, A) (A, Ihv) (Ihv, A) (A, M) (M, A) (A, N) (N, A)

Algorithms

C

(a) M=3 objectives

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(A, Ie+) (Ie+, A) (A, Ihv) (Ihv, A) (A, M) (M, A) (A, N) (N, A)

Algorithms

C

(b) M=4 objectives

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(A, Ie+) (Ie+, A) (A, Ihv) (Ihv, A) (A, M) (M, A) (A, N) (N, A)

Algorithms

C

(c) M=5 objectives

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(A, Ie+) (Ie+, A) (A, Ihv) (Ihv, A) (A, M) (M, A) (A, N) (N, A)

Algorithms

C

(d) M=6 objectives

Fig. 6. C metric. Algorithms AεSεH (A), IBEA Iε+ (Iε+), IBEA IHD (IHD), NSGA-II
(N) and MOEA/D (M).

These results complement our analysis of the previous section and confirms
our expectation that too much exploration by MOEA/D could be detrimental to
its performance in larger landscapes. It also shows that IBEA can find a subset
of well converged solutions. However, it does it at the expense of not finding
a well spread set of solutions. AεSεH seems to have a good balance between
convergence and diversity, which favors its scalability to larger landscapes. It
will be interesting to find ways to control the exploration/exploitation features
of the algorithms studied here to improve their performance, whether we scale
up the objective space or the search space.

5 Conclusions

This work analyzed and compared the performance of MOEA/D, IBEA using
the binary additive ε and the hypervolume difference indicators, and AεSεH
for many-objective optimization. We traced the dynamics of the algorithms in
small MNK-landscapes, performed and off-line analysis of the Pareto optimal so-
lutions discovered and dropped at each generation, and compared the algorithms
for their ability to generate high-resolution approximations of the Pareto optimal
set. Our analysis in small landscapes showed that exploration in MOEA/D is
more intense than in AεSεH. This favors MOEA/D in small landscapes as we in-

33

14

crease the number of objectives, where is relatively easy to hit the Pareto optimal
set and exploration is more important to increase the resolution of the approx-
imation. However, in large landscapes too much exploration hinders MOEA/D
and AεSεH generates approximations with better convergence and diversity,
regardless of the number of objectives. IBEA converges to the central region
of objective space, achieving low resolutions in small landscapes. In large land-
scapes this results in a subset of solutions with very good convergence properties,
but poorly spread. In the future we would like to find ways to control the ex-
ploration/exploitation features of the algorithms to improve their performance
when we scale up the objective and search spaces.

References

1. E. Hughes,“MSOPS-II: A General-Purpose Many-objective Optimiser”, Proc.
IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3944-3951, 2007.

2. Q. Zhang and H. Li, MOEA/D: A Multi-objective Evolutionary Algorithm Based
on Decomposition, IEEE Trans. on Evol. Computation, 11(6), 712–731, 2007.

3. E. Zitzler, S. Kunzli, “Indicator-Based Selection in Multiobjective Search”, Proc.
8th Int’l Conference on Parallel Problem Solving from Nature PPSN VIII, Springer,
Lecture Notes in Computer Science, vol. 3242, pp. 832-842, 2004.

4. N. Beume, B. Naujoks, M. Emmerich, “SMS-EMOA: Multiobjective Selection
Based on Dominated Hypervolume”, European Journal on Operational Research,
vol. 181, no.3, pp.1653-1669, 2007.

5. C. Igel, N. Hansen, S. Roth, “Covariance Matrix Adaptation for Multi-objective
Optimization”, Evolutionary Computation, 15(1), 1-28, 2007.

6. M. Laumanns, L. Thiele, K. Deb, E. Zitzler, “Combining Convergence and Diver-
sity in Evolutionary Multi-objective Optimization”, Evolutionary Computation,
10(3), 263-282, 2002.

7. D. Hadka and P. Reed, “Borg: An Auto-adaptive Many-objective Evolutionary
Computing Framework”, Evolutionary Computation, 2(2), 231-259, 2013.

8. H. Aguirre, A. Oyama, and K. Tanaka, “Adaptive ε-Sampling and ε-Hood for
Evolutionary Many-Objective Optimization”, Proc. 7th Int’l Conf. on Evolutionary
Multi-Criterion Optimization, Springer, LNCS, vol.7811, pp. 322-336, 2013.

9. K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, “A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II”, KanGAL
report 200001, 2000.

10. H. Aguirre and K. Tanaka, “Insights on Properties of Multi-objective MNK-
Landscapes”, Proc. 2004 IEEE Congress on Evolutionary Computation, IEEE
Service Center, pp.196–203, 2004.

11. H. Aguirre, A. Liefooghe, S. Verel and K. Tanaka, “An Analysis on Selection
for High-Resolution Approximations in Many-objective Optimization”, Proc. 13th
Int’l Conference on Parallel Problem Solving from Nature, Springer, Lecture Notes
in Computer Science, vol. 8672, pp. 487-497, 2014.

12. S. Zapotecas Mart́ınez, H. Aguirre, K. Tanaka and C. Coello, “On the Low-
Dyscrepancy Sequences and Their use in MOEA/D for High Dimensionality Ob-
jective Spaces”, Proc. 2015 IEEE Congress on Evolutionary Computation, IEEE
Press, to appear, 2015.

34

35

Traffic Signal Optimization:
Minimizing Travel Time and Fuel Consumption

Rolando Armas, Hernán Aguirre, Saúl Zapotecas-Martı́nez, and Kiyoshi Tanaka

Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 JAPAN

{rolando.armas@iplab., ahernan@, zapotecas@, ktanaka@}shinshu-u.ac.jp

Abstract. This work integrates a multi-objective evolutionary algorithm with the
multi-agent transport simulator MATSim and the comprehensive modal emission
model simulator CMEM to analyze the evolutionary optimization of traffic sig-
nals minimizing travel time and fuel consumption on a real-world large scenario.
We simulate the movement of 20.000 vehicles on the transport network of a 5×8
Km2 area of Quito including 70 signal lights. Our aim is to clarify the nature
and the extent of the conflict between these objectives. We also compare with a
single-objective optimization algorithm where only travel time is optimized and
evaluate the impact of the signals settings on gas emissions.

1 Introduction

The design of sustainable transport systems has received attention in recent years [1].
Population growth and urbanization trends have increased the demand of road networks
causing congestion. This adds substantial costs for transportation and business opera-
tions, increases the risk of accidents, and increases gas emissions affecting the envi-
ronment and population health [2]. Sustainable transport systems consider mobility,
societal and economic aspects aiming to improve life in urban centers and reduce the
impact on the environment.

Designing a sustainable transport system is a highly complex problem. Develop-
ments on simulators are helping to create computational models of real world transport
systems and emission models. Experts use these simulators to study the transport and
mobility system, gain knowledge of it and try alternative hypothesis and scenarios in
search of appropriate solutions from a sustainability standpoint. However, the dimen-
sion of the problem and the possible number of alternative solutions is overwhelmingly
high. Thus, an expert usually focuses on reduced parts of the system and can analyze
only a few alternatives that try to solve the problem partially.

Evolutionary computation provides the means to search and explore several alter-
natives, allowing the expert to direct evolution and focus its analysis on promising so-
lutions found by artificial evolution. Besides, since a sustainable transport system must
consider several criteria related to the mobility, the economy, the society and the en-
vironment, multi- and many-objective evolutionary approaches seem as an appropriate
tool to integrate with transport and emissions simulators to help understand the trade-
offs inherent to the sustainability problem.

36

2

In the literature, there are some works related to single- and multi-objective opti-
mization that partially deal with sustainable transportation systems. For example, Kim
et al.[3] solves a road network design problem (RNDP) using a bi-level optimization
approach that reflects the different objectives between planners and network users. The
authors focused on the design of a very small network with six links and six nodes op-
timizing three objectives related to travel time, fuel consumption, and accessibility to
network’s nodes. Stolfi and Alba [4] implemented an evolutionary and rerouting algo-
rithm that suggests alternative routes to avoid traffic jams, showing that it is possible to
reduce travel times, greenhouse emissions, and fuel consumption. This approach uses
a single-objective optimization algorithm that combines all the criteria into one aggre-
gation function. The authors used four scenarios in a range between 2.5 and 7 Km2

with a number of vehicles between 1200 to 1400. Traffic lights were considered in the
scenarios but were not subject to optimization.

In this work we integrate the Multi-agent Transport Simulator MATSim [5], the
Comprehensive Modal Emission Model (CMEM) simulator [6], and a multi-objective
evolutionary algorithm. We simulate the movement of 20.000 vehicles on a transport
network that covers a significant part of Quito city and includes 70 signal lights. Our
aim is to study and understand in a large real-world scenario the influence of optimal
signal settings on travel time and fuel consumption. Particularly, we want to clarify the
extent of the conflict between these objectives, if any, when they are optimized simul-
taneously and how the settings of the signals relate to the trade-offs between them. We
also compare with a single-optimization algorithm where only travel time is optimized
and evaluate the impact of the signals settings on gas emissions.

2 Method

The three main components of the optimization system considered in this study are
the Multi-agent Transport Simulator MATSim [5], the Comprehensive Modal Emis-
sion Model (CMEM) simulator [6], and a multi-objective evolutionary algorithm. Fig.1
illustrates their interaction.

MATSim allows micro-simulation of agents moving on a transport system produc-
ing detailed information about the routes and movements of the agents. MATSim re-
quires as inputs the initial mobility plans for a set of agents and a model of the transport
infrastructure. MATSim computes initial routes for the agents based on heuristics and
simulates the traffic following the initial plans of the agents. Then it iterates to optimize
plans and routes for all agents in order to provide a system in an equilibrium state [7],
where no traveler can improve his travel time or utility function by unilaterally changing
routes. MATSim can be run with and without traffic lights. If traffic lights are specified,
MATSim simulates them microscopically using fixed-time controls [8].

CMEM is a microscopic emissions simulator that computes second-by-second tailpipe
emissions and fuel consumption based on different vehicle operating modes (modal),
such as idle, steady-state, cruise, and various levels of acceleration/deceleration [9]. It
is called comprehensive because it can predict emissions for a wide range of vehicle
/ technology categories and various operating conditions, such as properly function-
ing, deteriorated, malfunctioning. CMEM requires two groups of inputs, input operat-

37

3

Fig. 1. Optimization System

ing variables and model parameters. The input operating variables include information
about the activity of the vehicles, that is second-by-second speed (from which acceler-
ation can be derived) and the slope of the road. The model parameters are determined
for each one of the vehicles used in the simulation according to the categorization es-
tablished by CMEM.

Before we run the optimizer, we prepare the initial mobility plans of the agents
as well as the model of the transport infrastructure and run MATSim without signal
lights until it reaches an equilibrium state. Also, we prepare the profiles of the vehicles
associated with the agents, which are required by CMEM.

The multi-objective evolutionary algorithm evolves a population of candidate solu-
tions. Each solution represents the configuration of all light signals (signal control) of
the transportation system under study. The algorithm minimizes simultaneously two fit-
ness functions, the average travel time and the fuel consumption of the agents that move
in the transport network. At each generation, to compute the fitness of a solution, the
evolutionary algorithm calls MATSim and CMEM, one after the other. MATSim sets
the signals of the transport system with the values specified by the tentative solution
provided by the evolutionary algorithm. Then, MATSim runs one iteration to simu-
late the movement of the agents following the mobility plans and routes that led the
system to the equilibrium state. The output generated by MATSim is used to compute
the average travel time of the agents. CMEM is called with the travel details of each
agent extracted from the MATSim output and the profiles of the vehicles prepared in
advance. The output generated by CMEM is used to compute the fuel consumption of
the agents. Once all solutions are evaluated, the evolutionary algorithm continues to the
next generation, stopping after a specified maximum number of generations has been
completed.

3 Evolutionary Algorithm

In this work we use the Adaptive ε-Sampling and ε-Hood (AεSεH) [10] algorithm to
search optimal solutions. AεSεH is an elitist evolutionary multi- and many-objective

38

4

optimizer that applies ε-dominance [11] principles both for survival selection and par-
ent selection. In the following, we describe the main features of the algorithm, repre-
sentation, operators of variation, and fitness functions used to study our system.

3.1 AεSεH

AεSεH follows the main steps of a population-based evolutionary algorithm, i.e. parent
selection, offspring creation and survival selection, adjusting its operation depending
on whether the population contains dominated solutions or not.

To perform survival selection, the current population and its offspring are combined
and divided into non-dominated fronts using the non-dominated sorting procedure. If
the number of non-dominated solutions in the first front is smaller than the population
size, the sorted fronts of non-dominated solutions are copied one at the time to the next
population until it is filled; if the last copied front overfills the population, the required
number of solutions are chosen randomly from it to have the exact number specified
by the population size. On the other hand, if the number of non-dominated solutions in
the first front is larger than the population size, the first front is truncated to the size of
the population using the ε-sampling procedure. ε-sampling randomly chooses solutions
from the first front to include them in the surviving population, eliminating from the
front those solutions that are ε-dominated by the chosen samples. As a result, solutions
in the next population are spaced according to the f (x) 7→εs f

′
(x) mapping function

and parameter εs used to compute ε-dominance between solutions.

For parent selection, the algorithm first uses a procedure called ε-hood creation
to cluster solutions in objective space and then applies ε-hood mating to select par-
ents. When all solutions in the population are non-dominated, ε-hood creation selects
randomly an individual from the population and applies ε-dominance with mapping
function f (x) 7→εh f

′
(x) and parameter εh. A neighborhood is formed by the selected

solution and its εh-dominated solutions. Neighborhood creation is repeated until all so-
lutions in the population have been assigned to a neighborhood. ε-hood mating sees the
neighborhoods as elements of a list and visits them one at the time in a round-robin
schedule. The first two parents are selected randomly from the first visited neighbor-
hood in the list. The next two parents are selected randomly from the second neighbor-
hood in the list, and so on. When the end of the list is reached, parent selection contin-
ues with the first neighborhood in the list. On the other hand, when dominated solutions
are present in the population, ε-hood creation makes sure that the solution sampled
to create the neighborhood is a non-dominated solution and ε-hood mating uses binary
tournaments based on dominance rank to select parents within the neighborhoods. Both
epsilon parameters εs and εh used in survival selection and neighborhood creation, re-
spectively, are dynamically adapted during the run of the algorithm.

This algorithm has been shown to work effectively on continuos and discrete multi-
and many-objective optimization problems [10] [12] [13]. Further details about the al-
gorithm can be found in [10] and [12].

39

5

Fig. 2. Traffic Light Components

Fig. 3. Chromosome Representation

3.2 Representation

The principal components of a traffic signal are cycle length, phase, offset, stage, green
and inter-green time. Cycle length is the time in seconds required for one complete color
sequence of the signal. A phase is the set of movements that can take place simultane-
ously. An Offset is the time lapse in seconds between the beginning of a corresponding
green phase at an intersection and the beginning of a corresponding green phase at the
next intersection. One stage is a green and inter-green time sequence (see Fig.2).

A signal S in junction h is represented by set of integer variables expressed by

S h =
(
Ch, θh, φh,1, · · · , φh,r

)
, (1)

where Ch is cycle length, θh is the offset, and φh,1, · · · , φh,r are the green times for the
r phases of the signal. Signal S h represents one gene, and a set of signals constitute
the chromosome of an individual, i.e. a solution with the complete specification of all
signals considered in the system. Fig.3 illustrates the representation of a solution to a
system with h signals, each one with two phases. The ranges and constraints of these
variables are given in Eq.(2) – Eq.(8), where Ih,r is the inter-green time at signal h for
phase r and Ph is the total number of phases at signal h. Equations Eq.(2) – Eq.(4)
represent the range for cycle length Ch, offset θh and green time φh,r, respectively. Chmin
is determined by identifying the signal that needs the longest duration just to accom-
modate the inter-green times and the minimum green times as shown in Eq.(5). Cmax

is set to 135 seconds. Inter-green is 3 seconds and minimum green time duration is 17
seconds for all signals as shown in Eq.(6). Eq.(7) ensures that the sum of the green
times in a signal together with inter-green do not exceed the cycle length set for the
signal. Eq.(8) establishes the maximum green time for the signal phase based on the
cycle time, inter-green and minimum green time.

Chmin ≤ Ch ≤ Chmax (2)

0 ≤ θh ≤ Ch − 1 (3)

φh,rmin ≤ φh,r ≤ φh,rmax (4)

40

6

Cmin = Max
{(∑Ph

r=1 φh,r +
∑Ph

r=1 Ih,r

)
: h = 1, 2...,N

}
(5)

φh,rmin = 17 sec ∀h, r (6)

Ch =
∑Ph

r=1 φh,r +
∑Ph

r=1 Ih,r ∀h (7)

φh,rmax = Ch −
Ph∑

r=1

Ih,r −
Ph∑

y=1y,r

φh,ymin (8)

3.3 Operators

To create offspring we follow the representation described above and apply crossover
with probability Pc and mutation with probability Pm per signal. If a signal undergoes
mutation, we apply one of the three mutation operators for cycle length, offset, and
green times with probability Pm

(Ct), Pm
(O f) and Pm

(Gt), respectively. The operators are
as follows.

Crossover: In this work we implement one point crossover taking each signal as an
atomic unit. The crossing point is selected randomly with equal probability in the range
[1,h - 1], where h is the number of signals. Then the crossover operator interchanges
complete signals between parents.
Cycle length mutator: This operator increases or decreases randomly with equal prob-
ability the cycle length of a signal using step size stepCt. If the new cycle length is out
of the specified range, we adjust it accordingly to be either Chmin or Chmax. After that, it
is necessary to check whether offset time violates its constraint. If offset is larger than
the new cycle length, it is reset to new cycle length – stepO f f , where stepO f f is the
offset step size. Finally, for each signal phase the green times are adjusted proportion-
ally to the new cycle length. Due to the correlation of offset and green times to the cycle
length, this operator may act as a macro-mutation operator.
Green time mutator: This operator decreases the green time of one phase and adds it
to another phase using step size stepGt. To determine the phase that will decrease its
green time, we randomly visit the phases until we find one in which the decrement does
not violate the constraint for minimum green time φh,rmin. The phase to which the green
time is added is also determined randomly among all phases, except the one in which
time was reduced.
Offset time mutator: This operator increases or decreases randomly with equal prob-
ability the offset time of a signal using step size stepO f f . If offset becomes negative,
it is reset to 0. Likewise, if offset is greater than the maximum cycle length Chmax, it is
reset to Chmax – stepO f f .

3.4 Fitness Functions

In this work, we minimize two fitness functions, the average travel time and the total
fuel consumption of the agents that move in the network. To compute the fitness of
a solution, MATSim sets the signals of the system with the values specified by the
solution passed by the evolutionary algorithm, simulates the movement of the agents
following the routes that led the system to an equilibrium state, and outputs the time

41

7

taken by each agent to travel each one of the links included in its route. A transport
network can be represented by a directed graph G = (N, A), where N represents nodes
and A represents links. The travel time for a given vehicle is

tia = tx
ia − te

ia a = 1, ..., A; i = 1, ...,V, (9)

where tia represents the travel time on link a for vehicle i, tx
ia denotes the time vehicle i

exited link a (see Fig.1), te
ia denotes the time vehicle i entered link a, V is the number

of vehicles being simulated, A is the number of links in network, e is the entry node
and x is the exit node [14]. Thus, the average travel time, the first fitness function, is
expressed by

f1 =

∑V
i=1

∑A
a=1 tia

V
, (10)

subject to signal timing design and feasibility constraints shown in Eq.(2)- Eq.(8) [15].
The second fitness function corresponds to the fuel consumption of the agents along

their legs. It is computed from the output generated by CMEM, which is called along
with the travel details of the agents produced by MATSim and the profiles of the vehi-
cles. The second function is stated by

f2 =

V∑

i=1

L∑

j=1

c j
i (11)

where V is the number of vehicles, L the number of legs, and c j
i is the fuel consumption

(in grams/km) of the ith vehicle at the jth leg.

4 Simulation Results and Discussion

4.1 MATSim and CMEM Preliminaries

The geographical area of study is a large and important part of Quito (Ecuador). It
includes the business district, eight major universities, several hospitals, large malls,
two large parks, and one major soccer stadium, covering approximately 5×8 Km2 as
shown in Fig.7. In this area, the slopes of the pathways are in the range from -15 to 15
degrees. For this experiment, we take into account all the pathways with free speeds in
the range from 30 to 80 Km/h. The network has 8192 links and comes from Geofabrik
and OpenStreetMap [16]. We use the Digital Elevation Model (DEM) from SavGIS
[17] to compute the slopes.

The number of simulated agents is 20.000. The mobility plan for each agent consists
of two main trips or legs: 1) from home to work, study, or others and 2) from work,
study, or others to home (see Fig.1). The plans are designed so that all agents move
first from each home location to different points along the area of study. Those points
are facility locations such as universities, workplaces and others like malls, and parks.
In their second trip, the agents move back home. The distribution of home locations,
workplaces, and education facilities for the mobility plan have been chosen taking into
account census data and a previous mobility study [18].

42

8

The scenario includes 70 signal lights located on the main pathways with flows
in south-north-south, and east-west-east directions (see Fig.7). We run the multi-agent
transport simulator MATSim for 200 iterations, making sure it reaches a user equilib-
rium state without setting any traffic signal. The traffic simulation period is for 24 hours.
It takes approximately 10 hours of computation time to run MATSim for this number
of iterations. Traffic signals are optimized using the equilibrium state as an initial con-
dition.

CMEM uses a total of 55 static parameters to characterize the vehicle tailpipe emis-
sions for the appropriate vehicle/technology category. CMEM defines 24 Light-Duty
Vehicle (LDV) categories based on fuel and emission control technology, accumulated
mileage, power to weight ratio, emission certification level, and emitter level category.
We have selected 4 categories based on two main features: accumulated mileage and
emitter level category based on model year distribution according to transportation cen-
sus data [19]. Table 1 shows the vehicle categories chosen for our scenario. We assign
randomly a category to each agent according to the distribution obtained from the cen-
sus.

Table 1. CMEM Vehicle Categorization

LDV Categories
9 Tier 1>50K miles high power/weight 26 Ultra-Low Emission Vehicle
24 Tier 1>100K miles 27 Super Ultra-Low Emission Vehicle

4.2 Evolutionary Algorithm Experimental Setup

We use a fixed population size of 20. The initial population is created deterministically
as follows. We prepare 20 cycle lengths in the range [40, 135] seconds in steps of 5.
All solutions are set with a different cycle length, but all signals of a solution are set to
the same cycle length. The offset times of all signals are set to zero and green times per
phase are set to the same value according to the cycle length, i.e. green time = (cycle
length - inter-green) /2. That is, all signals are synchronized to start at the same time but
are not coordinated to allow the uninterrupted flow of vehicles along contiguous signals
in the same pathway.

For the operators, we set crossover rate to Pc = 1.0 and mutation rate per signal to
Pm = 4/n, where n is the number of signals. The mutation rates for cycle length, offset
and green time operators are Pm

(Ct) = 0.5, Pm
(O f) = 0.3 and Pm

(Gt) = 0.2, respectively.
The mutation steps are set to stepCt=5, stepO f f =10, stepGt=3 for cycle, offset and
green time, respectively. These mutation steps reduce considerably the search space.

We conduct 10 runs of the algorithm setting the number of generations to 50, use
different random seeds but all runs start with the same initial population. To evaluate one
individual, it takes in average 4 minutes to run MATSim and compute the first fitness
function, and 16 minutes to run CMEM and compute the second fitness function.

43

9

600 800 1200

1
6

0
0

0
1

7
0

0
0

1
8

0
0

0

Travel Time (s)

F
u

e
l
C

o
n

s
u

m
p

ti
o

n
 (

L
it
e

rs
)

Gen.

0
5
10
15
25
35
50

600 800 1000

1
6

0
0

0
1

6
5

0
0

1
7

0
0

0
1

7
5

0
0

Travel Time (s)

F
u

e
l
C

o
n

s
u

m
p

ti
o

n
 (

L
it
e

rs
)

Run

1
2
3
4
5
6
7
8
9
10

(a) Bi-objective optimization (b) Single- and bi-objective optimization

Fig. 4. Objective values of solutions by bi- and single-objective optimization

1350 1400 1450 15001
7

7
0

0
1

8
0

0
0

1
8

3
0

0

Travel Time(s)

F
u

e
l
(l
it
e

rs
)

130

120

110

100

90

80
70

60 65

50

Fig. 5. Non-dominated solutions in initial
population labeled with cycle length

single−obj. bi−obj.

4
0

6
0

8
0

Best Solution

C
y
c
le

 L
e
n
g
th

(s
)

Fig. 6. Cycle length, best travel time solu-
tions, single- and bi-objective optimization

4.3 Results

Fig.4 (a) shows the Pareto fronts found by the algorithm at generations {0, 5, 10, 15, 25,
35, 50} for one of the runs. Fuel consumption is converted to liters from kilograms
using a gasoline density of 0.755 Kg/liter. The intersection of the dashed lines marks
the fitness value of the solution at equilibrium state without signals. Note that a clear
trade-off between travel time and fuel consumption can be observed at generation 0 in
the initial population. As evolution proceeds, travel time and fuel consumption reduce
and approach the values observed at equilibrium state, but the number of non-dominated
solutions reduce to a few and in some generations even to one. These results illustrate
that the optimization of signals allowing different cycle times and coordinating them
by properly setting their offsets lead to significant reductions in both fuel consumption
and travel time. Also, the number of non-dominated solutions suggests that the range of
the trade-offs reduce conform we optimize both objectives. This is expected since both
objectives functions are correlated in the sense that a reduction in travel time implies
that the engines are turned-on for a shorter time and therefore, use less fuel.

44

10

Here an important question is whether optimizing a single fitness function, either
travel time or fuel consumption, could be enough to minimize both objectives. We ver-
ify this by optimizing only travel time with an elitist single-objective optimization al-
gorithm [20] set with the same initial population, operators, and parameters used for
the bi-objective optimizer. Fig.4 (b) shows the Pareto fronts found at the last genera-
tion of the 10 runs of the bi-objective optimization algorithm. It also includes in black
squares the best solutions found by the single-objective optimization algorithm. From
this figure note that overall results by the bi-objective optimization are better than by the
single-objective optimization, thought both point towards the same minimum values.
These results suggest that although there could be few non-dominated solutions in the
region where both objectives are minimized the inclusion of the second objective helps
to perform a more effective optimization. It is also worth noting that variance by the
single-objective optimization is larger than by the bi-objective optimization. Nonethe-
less, the multi-objective optimization could also get trapped in local optima far away
from the region of optimality, as observed for run 9 in Fig.4 (b) where travel time and
fuel consumption are around 300 seconds and 800 liters worse than the solutions with
minimum fitness found in run 4. This is a computationally very expensive problem, and
not many runs are possible. Thus, it is important to reduce the variance of the solutions
found in different runs to increase the reliability of the algorithm. To that end, we should
analyze further the operators, population size, and selection of the algorithm in order to
find ways to escape local optima.

Fig.4 (a) and (b) illustrate the trade-offs in objective space. In the following, we
analyze the settings in decision space, particularly cycle length and offset of the signals.
Fig.5 shows the non-dominated solutions in the initial population, fuel consumption
over travel time (labeled with cycle length), where all signals of a solution are set to
the same cycle length, offset is set to 0, and green times are similar in both traffic flow
directions. Note from the figure that when signals are not coordinated, offset set to 0,
smaller travel times are achieved by longer cycle lengths and lower fuel consumptions
are achieved by shorter cycle lengths. Fig.6 shows box-plots of the cycle length of the
best solutions in travel time found by the single- and bi-objective optimization. Note
that the optimized solutions include shorter cycle lengths than the best solutions in
the initial population and that the cycle lengths by the bi-objective optimization are
shorter than by the single-objective optimization. For the single-objective algorithm the
highest ranked solution are the ones with the larger cycle length. So, those solutions
will be preferred for mating and reproduction. This could imply a loss of diversity of
solutions with shorter cycle lengths. However, as indicated above, optimal solutions
are a combination of signals with shorter but different cycle lengths. In the case of the
bi-objective optimizer, solutions with shorter cycle length will also have a high rank
thanks to the second objective, i.e. fuel consumption. Thus, the bi-objective optimizer
will not suffer from a lack of diversity of solutions with shorter cycle length.

Fig.7 shows the cycle length of the signal lights of the solutions with shorter travel
time by the single and bi-objective optimization approaches, deployed on the map of
the area of study. Similarly, Fig.8 shows the offsets of the signal lights. From Fig.7 it is
worth noting that a pattern can be seen in the solutions produced by both approaches. In
both solutions, the largest cycle lengths are assigned to signals located in the south-north

45

11

(a) Single-objective (b) Bi-objective

Fig. 7. Best Solution Cycle

(a) Single-objective (b) Bi-objective

Fig. 8. Best Solution Offset

46

12

avenue in the western part of the city. This illustrates the kind of design knowledge we
aim to extract from the optimization process, useful to understand and decide the final
settings of the signal lights. From Fig.8 it should be noted that both solutions include
some signals with offset 10 or 20, however still many of them remain 0. This is due
to the short-term evolution used in this work. The proper setting of offsets undoubtedly
helps improve traffic. In the future, we should look for ways to enhance the optimization
of offsets.

Table 2. Scenario Emissions

Eq.
State

g=0
Ch=130

g=0
Ch=50

g=50
Bi-obj.

g=50
Single-obj.

Travel Time (s) 608 1320 1513 709 734
Fuel Consum. (l) 15817 18384 17780 16665 16858
HC (Kg) 121.97 129.76 128.26 125.81 126.32
CO (Kg) 2623.90 2764.50 2762.97 2736.81 2737.88
NOx (Kg) 277.44 253.71 262.34 264.18 261.89
CO2 (Kg) 33347.37 39248.40 37810.00 35188.40 35647.50

Table 2 shows travel time and fuel consumption together with HC, CO, NOx, and
CO2 emissions produced by all agents corresponding to the equilibrium state without
traffic signals. Also solutions including traffic signals at generation 0 with smallest val-
ues in travel time and fuel consumption, and solutions with traffic signals that minimize
travel time by the bi- and single-objective optimizer at generation 50. These results il-
lustrate that in addition to minimizing travel time and fuel consumption, the various
kinds of emissions can also be reduced significantly if traffic lights are optimized.

Finally, Fig.9 shows the traffic volume for the one-day simulation and during peak
hours observed for the scenario studied in this work. Note that the main flows of agents
go south-north-south rather than east-west-east, which reflects the demographics of the
city.

5 Conclusion and Future Work

In this work, we analyzed the evolutionary optimization of traffic signals minimizing
simultaneously travel time and fuel consumption on a large real-world scenario. We
integrated a multi-objective evolutionary algorithm with the transport simulator MAT-
Sim and the emissions model simulator CMEM. We used as a case study the transport
network of a 5×8 Km2 area of Quito set with 70 signal lights, and simulated one day
traffic of 20.000 agents moving according a two-leg mobility plan. We showed that there
is a clear trade-off between travel time and fuel consumption when the signals are set
with the same cycle length and are not coordinated (there is not offset between the start
of the cycles). We also showed that the optimization of the signals allowing different
cycle lengths between signals and coordinating them by properly setting their offsets
can reduce significantly both travel time and fuel consumption. This reduces the range

47

13

(a) One day simulation. (b) Peak hours (08h00 and 17h00).

Fig. 9. Traffic Volume

of the trade-offs between the two objectives. Further, we verified that the bi-objective
optimization approach produces better results than a single-objective approach that op-
timizes only travel time. We showed evidence that the single-objective algorithm is
misled by the initially uncoordinated signals where larger cycle lengths allow shorter
travel times, whereas combinations of coordinated signals with shorter cycle lengths
lead to better travel times and lower fuel consumption. This was not an issue for the
multi-objective optimizers because the second objective related to fuel consumption
favors shorter cycle lengths even in uncoordinated signals.

As future works, we should improve the evolutionary algorithm to reduce its vari-
ance and enhance its reliability for short-term evolution and few fitness evaluations.
Also, we should study other mobility plans and scenarios for the agents. Furthermore,
in addition to optimizing traffic signals, we would like to add new variables and opti-
mization criteria to study other important aspects of sustainable transport systems.

Acknowledgements. The first author gratefully acknowledges the support of Na-
tional Secretariat of Higher Education, Science, Technology and Innovation of Ecuador.

References

1. United Nations, Economic Commission for Europe. Intelligent Transport Systems (ITS) for
Sustainable Mobility, 2012.

2. US Environmental Protection Agency, EPA. Air trends, 2010.
http://www.epa.gov/air/airtrends/2010/, Accessed August 2014.

3. J. H. Kim, Y. K. Bae , and J. H. Chung. Multi objective optimization for sustainable road
network design problem. Proc. International Conference on Transport, Environment and
Civil Engineering (ICTECE’2012), pp. 104–108, 2012.

48

14

4. D. H. Stolfi and E. Alba. Eco-friendly reduction of travel times in european smart cities.
Proc. 2014 Conference on Genetic and Evolutionary Computation (GECCO 2014), ACM,
pp. 1207–1214, 2014.

5. Multi agent transport simulation (MATSim). http://matsim.org, Accessed January 2014.
6. Comprehensive modal emission model (CMEM). http://www.cert.ucr.edu/cmem/index.html,

Accessed January 2014.
7. J.G. Wardrop. Some theoretical aspects of road traffic research. ICE Proceedings: Engineer-

ing Divisions, 1(3):325–362, 1952.
8. D. Grether and A. Neuman. Traffic light control in multi-agent transport simulations. Tech-

nical report, Transport Systems Planning and Transport Telematics, Technical University
Berlin, 2011.

9. G.Scora and M. Barth. Comprehensive Modal Emission Model (CMEM), User’s Guide ver-
sion 3.01. University of California Riverside Center for Environmental Research and Tech-
nology, 2006.

10. H. Aguirre, A. Oyama, and K. Tanaka. Adaptive ε-sampling and ε-hood for evolutionary
many-objective optimization. Proc. 7th International Conference on Evolutionary Multi-
Criterion Optimization, Springer, Lecture Notes in Computer Science, vol. 7811, pp. 322–
336, 2013.

11. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity in
evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263–282, 2002.

12. H. Aguirre, Y. Yazawa, A. Oyama, and K. Tanaka. Extending AεEεH from many-objective to
multi-objective optimization. Proc. 10th International Conference on Simulated Evolution
and Learning (SEAL 2014), Springer, Lecture Notes in Computer Science, vol. 8886, pp.
239–250, 2014.

13. H. Aguirre, A. Liefooghe, S. Verel, and K. Tanaka. An analysis on selection for high-
resolution approximations in many-objective optimization. Proc. 13th International Con-
ference on Parallel Problem Solving from Nature ? PPSN XIII, Springer, Lecture Notes in
Computer Science, vol. 8672, p. 487–497, 2014.

14. C. Spiegelman, E. Sug-Park, and L. Rilett. Transportation Statistics and Microsimulation.
CRC Press Taylor and Francis Group, 2011.

15. F. Teklu, A. Sumalee, and D. Watling. A genetic algorithm approach for optimizing traffic
control signals considering routing. Computer-Aided Civil and Infrastructure Engineering,
22(1):31–43, 2007.

16. R. Frederik, J. Topf, and C. Karch. Geofabrik, 2007. http://www.geofabrik.de, Accessed
January 2014.

17. M. Souris. Institut de Reserche pour le Developpement (IRD), 2014.
http://www.savgis.org/ecuador.htm#DEM30, Accessed October 2014.

18. F. Demoraes. Movilidad, elementos esenciales y riesgos en el Distrito Metropolitano de
Quito. PhD thesis, Universidad de Savoie - Francia, 2005.

19. National Institute of Statistics of Ecuador (INEC), 2010.
http://www.ecuadorencifras.gob.ec/, Accessed October 2014.

20. R. Armas, H. Aguirre, and K. Tanaka. Effects of mutation and crossover operators in the
optimization of traffic signal parameters. Proc. 10th International Conference on Simulated
Evolution and Learning (SEAL 2014), Springer, Lecture Notes in Computer Science, vol.
8886, pp. 167–179, 2014.

49

50

How to Mislead an Evolutionary Algorithm
using Global Sensitivity Analysis ?

Thomas Chabin1, Alberto Tonda1, and Evelyne Lutton1

UMR 782 GMPA, INRA
1 Av. Lucien Brétignères, 78850 Thiverval-Grignon, FRANCE

thomas.chabin,alberto.tonda,evelyne.lutton@grignon.inra.fr

Abstract. The idea of exploiting Global Sensitivity Analysis (GSA)
to make Evolutionary Algorithms more effective seems very attractive:
intuitively, a probabilistic analysis can prove useful to a stochastic opti-
misation technique. GSA, that gathers information about the behaviour
of functions receiving some inputs and delivering one or several outputs,
is based on computationally-intensive stochastic sampling of a parame-
ter space. Nevertheless, efficiently exploiting information gathered from
GSA might not be so straightforward. In this paper, we present three
mono- and multi-objective counterexamples to prove how naively com-
bining GSA and EA may mislead an optimisation process.

1 Introduction

Sensitivity analysis is the study of how the uncertainty in the output of a math-
ematical function can be apportioned to different sources of uncertainty in its
inputs [19]. In general, Sensitivity Analysis can be applied to any function f ,
Rn → Rp. In practice, this technique is widely exploited by the modeling com-
munity, to analyze the behaviour of models with respect to their parameters,
and to later plan new experiments to reduce the uncertainty on the most sensi-
tive parameters. Indeed, a model can be defined as a function f : Xl,Kn → Ym,
whose objective is to simulate a real physical phenomena. Knowing the initial
conditions represented by the vector Xl, the model produces the final condi-
tions of the studied phenomena, Ym. In real-world cases, the parameters of the
function Kn are not known with precision but rather defined by a range value
of uncertainty. Many sensitivity analysis tools perform a stochastic sampling of
considerable magnitude in the space of parameters, and then exploit statistical
techniques to derive information from this large quantity of data.

It is easy to see the potential interest of data collected through sensitivity
analysis for an optimisation of the parameters of the model: not only sensitivity
analysis provides a fine-grained sampling of a search space, but it also conveys
useful information about how each parameter influences each output. This holds

? This work has been funded by the French National Agency for research (ANR), under
the grant ANR-11-EMMA-0017, EASEA-Cloud Emergence project 2011, http://
www.agence-nationale-recherche.fr/

51

2

true especially for evolutionary optimisation techniques, that are based on a
biased stochastic sampling of the search space. Re-using the extensive amount of
computation performed for a sensitivity analysis to improve the performance of
an evolutionary algorithm (EA) targeting the same search space, sounds not only
sensible, but also extremely appealing. Not surprisingly, the literature already
shows approaches that exploit the synergy between sensitivity analysis and EAs
[7]. However, making use of the information conveyed by sensitivity analysis
might not be as straightforward as it seems.

In this paper, we exhibit three case studies, specifically designed to deceive
an EA exploiting sensitivity analysis data. Experimental results show that even
a state-of-the-art EA is unable to find the optimal parameter configuration for
the problems, if biased by the information provided by sensitivity analysis; on
the contrary, the same algorithm routinely converges on the global optimum if
no aprioristic knowledge is given, thus proving that a naive use of sensitivity
analysis information might actually be harmful to the optimisation process.

The rest of the paper is organized as follows: Section 2 recalls a few basic
concepts of sensitivity analysis, with a particular focus on the analysis of joint
variation of parameter interactions, and lists previous works at the interface
of sensitivity analysis and EAs. Section 3 discusses one of these combination
strategies. Counterexamples and experimental results are illustrated in Section
4, while the implications are discussed in Section 5. Finally, Section 6 concludes
the paper.

2 Background

2.1 Sensitivity analysis: Global and Local

Sensitivity analysis is a technique used to understand how variation in the out-
put of a function can be apportioned qualitatively or quantitatively to different
uncertain input sources. Sensitivity analysis techniques can be broadly classified
as local or global. Local sensitivity analysis (LSA) is the simpler approach, where
only one function variable is perturbed at a time, while the remaining are fixed
to a nominal value. Different studies have shown that limiting the analysis to lo-
cal sensitivities might deliver unreliable results [20, 23]. Thus, global sensitivity
analysis (GSA) [19] that examines the joint variation of variable interactions,
seems to be better suited for complex, nonlinear models.

2.2 Global Sensitivity Analysis

GSA is mainly used for two goals: factor prioritizing, deciding which variable
uncertainty to work on, in order to reduce the uncertainty of the output; and
factor fixing, highlighting which variables can be fixed to an arbitrary value
with few influence on the output. One of the most common approaches has been
developed by Sobol [21]. Impacts of each individual decision variable and its
interactions with other variables on performance objectives are represented with
the following sensitivity indices, taking values in [0, 1].

52

3

First-order sensitivity indices are used for the factor priority problem. A
first-order index Si is associated to each parameter Ki, and represents the direct
influence of its uncertainty on an output Y :

Si =
V [E(Y |Ki)]

V (Y)

It corresponds to the part of the variance of Y explained directly by the un-
certainty in Ki: V [E(Y |Ki)] is the conditional expectation of Y knowing Ki,
fixed at each possible value within the uncertainty range of Ki. Fixing to its
true value the variable associated to the highest first-order index, would lead to
the greatest reduction in the variance of the output.

Higher-orders sensitivity indices correspond to interaction effects. For
instance, indices of order 3 Sijk are associated to each triplet of parameters
Ki,Kj ,Kk:

Sijk =
V [E(Y |Ki,Kj ,Kk)]

V (Y)

The sum of all n-order indices is always equal to 1. The computation of higher-
order indices is expensive, as there are

(
n
k

)
of such indices for k parameters. In

practice, they are rarely used. They are not considered in this paper.
Total-effect sensitivity indices are used for the factor-fixing problem. A

total-effect index is attributed to each parameter, and it is interpreted as the
sum of all n-order indices involving the considered parameter. A total effect
index STi represents how much the uncertainty of a parameter, combined with
every other uncertainty, is responsible for the output variance:

STi = 1− V [E(Y |K∼i)]
V (Y)

K∼i = K1,K2, ...,Ki−1,Ki+1, ...Kn is the set of all parameters except Ki. There-
fore, if a parameter has a total-effect index near zero, its uncertainty has nearly
no influence on the output variance. For this reason, this parameter can be fixed
to an arbitrary value inside his interval of uncertainty without affecting much
the variance of the output.

2.3 Sensitivity Analysis and Optimisation

In order to compute GSA indices, the search space of a group of parameters is
sampled, aiming at finding the parameters whose variation influences the output
of a function (or a model) the most. It is therefore not surprising that several
attempts have been performed to combine Sensitivity analysis with optimisation
tools, especially those featuring a stochastic sampling of the search space.

A considerable number of research lines exploit LSA to perform what is
termed robust optimisation [2], a set of techniques which seek a certain amount of
robustness against uncertainty, seen as variability in the value of the parameters
of the problem or its solution. Some work, like [1] also propose a multi-objective
strategy to assess the identifiability and LSA of the parameters of a system.

53

4

In [22], EAs are used to find the worst possible parameter settings for a model,
maximising the distance between experimental data and model predictions. The
results are then exploited to evaluate the influence of each parameter on the
outputs. While surely interesting, this approach lacks the statistical support of
Global Sensitivity Analysis, providing the user with a general impression of the
most influential parameters.

Another research line, presented in two technical reports [17, 16], aims at
using the points sampled by a CMA-ES algorithm [11] during the optimisation
process as the basis for a sensitivity analysis, through a de-biasing of the sam-
pling. In practice, weights are used on the sampling points, on the basis of the
covariance matrix’ determinant at each generation, to express their bias with
respect to a completely random process. This methodology raises several theo-
retical questions that will need to be thoroughly analyzed before its widespread
application.

In [7], the authors present an example where the use of GSA improves the EA
efficiency. They use GSA measurements to reduce the problem’s dimensionality,
first optimising the values of a sub-set of the most sensitive parameters, and then
restarting the evolution from the solutions found in this way, finally optimising
the remaining values. However, preliminary results presented in [3] hint that this
strategy may not always be viable.

3 Adaptive dimensionality reduction based on GSA

The idea of using progressive refinements techniques to perform a search in high
dimensional spaces appeared as attractive for a long time. This very simple idea
is at the origin, for instance, of the messy genetic algorithm scheme proposed by
Goldberg et al. 25 years ago [8] : “Nature did not start with strings of length two
million (an estimate of the number of genes in Homo sapiens) and try to make
man. Instead, simple life forms gave way to more complex life forms, with the
building blocks learned at earlier times used and reused to good effect along the
way.” Messy GAs rely on a variable length bit-string representation of the search
space made of a list of couples (locus, allele value) specifying the value of a bit at
a given place of the genome. In this way some genes may be over-specified (several
possible values) while other may be under-specified (no affected value). Fitness
calculation is then performed after an additionnal stage relying on various rules
for inferring uncomplete string values. This scheme has been extended in various
ways including continuous search spaces [18, 12]. It implements a self-adaptive
progressive refinement, where the selection of primary, “heavy” parameters, is
let to evolution.

Adaptive schemes (in the sense of “non-self-adaptive”) may also be consid-
ered in this context, the critical point being an a priori knowledge of an impor-
tance prioritization of the parameters. Sensitivity analysis may then represent
an attractive solution to deal with parameters importance ordering. The idea
is to identify non-influential parameters, via a sensitivity analysis of the fitness
function with respect to each parameter in the search space. A straightforward

54

5

strategy for dimensionality reduction is then to ignore non-influential parameters
in a first optimisation stage, like in [7].

4 Experimental analysis

We propose a series of counterexamples for testing the limits of dimensionality
reduction based on GSA, in the same spirit as deceptive functions design [10, 9]:
global information collected through statistical analysis of some features (build-
ing blocks statistics in the case of deceptiveness “à la Goldberg”) yields puzzling
information to the algorithm. Other interpretations may also stem from theo-
retical studies regarding the influence of local regularity features [13, 15]: global
optima are located in very irregular areas, while attractive local optima are lo-
cated inside smooth areas. Statistical features are actually not able to capture
local irregularities and are thus yielding erroneous information to the algorithm
[14].

The strategy that is tested relies on the following statement (factor fixing
approach, see Section 2.2): a low total effect index indicates a non-influential
parameter that can be arbitrarily fixed with only few impact on the fitness func-
tion. To decide which parameters are non-influential, a threshold is arbitrarily
fixed (a low value in the range [0, 1]): parameters that have a total sensitivity
index below this threshold are considered non-influential.

4.1 Algorithms

Three EAs have been tested: (i) CMA-ES, (ii) an explicit population based EA,
implemented with the EASEA package1 [4] and (iii) NSGA-II, a multi-objective
genetic algorithm. The following schemes have been considered for progressive
refinement:

– Approach 1 performs an optimisation of the influential parameters only. Non-
influential parameters are fixed to the middle of their interval of uncertainty.

– Approach 2 is based on [7]. Influential parameters are optimised in a first
stage, like in Approach 1, and then the best point is injected in the initial
population of a second optimisation, this time using all parameters.

CMA-ES. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[11] is a popular EA, widely used for many real-world optimisation problems.
It is known for its robustness and computational efficiency. For Approach 2,
CMA-ES is restarted as follows:

– The mean point is initialised to the best set of influential parameters found
during the first stage, while the values of non-influential parameters are set
to the middle of their interval of uncertainty.

– The standard deviation for each influential parameter is kept to the value
obtained at the last generation of the first stage, and the standard deviation
for non-influential parameters is set to 0.3× (rangemax − rangemin).

1 http://easea.unistra.fr

55

6

EA. The second algorithm used in our tests is a classical EA, i.e. an explicit
population based EA, programmed in EASEA [4]. For Approach 2, the initial
population of the second stage is seeded with the content of the last generation
of the first stage. The non-influential parameters who were fixed at the middle
of their interval of uncertainty (or search space) are attributed a random value
in their range of uncertainty.

NSGA-II. The Nondominated Sorting Genetic Algorithm [6] is a Multiob-
jective evolutionary algorithm. This algorithm builds a set of non-dominated
solutions that approximates an optimal Pareto front. Thanks to a clever ranking
and to the use of a crowding distance, the population stabilises on an efficient
sampling of the Pareto front. Approach 2 with NSGA-II uses a similar setting
as above, for the EASEA-EA.

4.2 Counterexample I

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ot

al
 S

en
si

tiv
ity

 in
de

x
va

lu
e

Total effect indices
First order indices

Fig. 1. Counterexample I. (left) In the fitness landscape, the peak of fit1 is at k2 =
0.0005. The line k2 = 0 is at the bottom of the peak. (right) Sensitivity analysis shows
that k1 is much more influential than k2.

The first counterexample is a function for which a non-influential parame-
ter remains important for the precise location of a global optimum. This can
be achieved with functions having simultaneously waves along some axes (corre-
sponding to influential “shapes”) and thin peaks along other axes. The projection
of the fitness function on the subspace of non-influential parameters then pro-
vides an averaged viewpoint on the fitness landscape that conceals high, thin

56

7

peaks. We thus propose the following bi-dimensional function (Fig. 1):

fit1(k1, k2) = g(k1, 1.33,−0.5, 0.3) + g(k2, 7.98, 0.0005, 0.05) + h(k1)

where g is a Gaussian: g(k, a, b, c) = a · exp(− (k − b)2

2c2
) and k1, k2 ∈

[
− 1; 1

]

To make optimisation easier with respect to parameter k1, a small gradient,
h(k1) is added to the fitness:

h(k1) =

{
1

1.0005k1 + 1
1.0005 for k1 ≤ 0.0005

− 1
0.9995k1 + 1

0.9995 elsewhere

A global sensitivity analysis, whose results are presented in Fig. 1 reads that
k1 is influential whereas k2 is not, since the total effect index of k2 is far lower
that the total effect index of k1.

EASEA-EA CMA-ES

Population size µ = 200 10

Offsprings size λ = 180 -

Number of generations 35 632

Tournament selection Size = 2 -

BLX-α Crossover p = 1. -

Log normal self adaptive mutation p = 1. τ =
√

2 -

Number of Runs 100 100

Table 1. Settings for the EAs used in Counterexample I

Fig. 2. Counterexample I. Comparison of optimisation runs on k1 and k2, respectively,
using the EASEA-EA(left) and CMA-ES (right). Statistics on 100 runs are displayed
with median in bold and first- and third- quartile in thin lines of the same color.

57

8

Approach 1 is tested: optimisation is run on parameter k1 only, and the result
is compared to an optimisation on parameter k2 only. Since k1 seems to bear all
influence whereas k2 appears to be non-influential, it is naively expected that
the optimisation on k1 will find a better value than the optimisation on k2. The
algorithms’ settings are reported in table 1. Statistics on 100 runs are displayed
in Fig. 2 for the EASEA-EA and CMA-ES algorithms. In this case, optimising
on the non-influential parameter is unexpectedly a better option than optimsing
on the supposedly most influential parameter.

4.3 Counterexample II

A restart strategy (Approach 2 of Section 4.1) may counterbalance the problems
presented above. We will see however that a restart strategy using GSA may
still be puzzled. This is the purpose of counterexample II (Fig. 3).

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity
 in

de
x

va
lu

e

Total effect indices
First order indices

Fig. 3. Counterexample II.(left) fit2 has two thin peaks, a very thin one corresponding
to a local optimum at (−0.5, 0.5) and a larger one, global optimum, at (0.5, 0.5). (right)
Sensitivity analysis shows that the total effect index for k1 is much higher than for k2.

fit2(k1, k2) = g(k1, 10.9, 0.5, 0.25) + g(k1, 11,−0.5, 0.25) + g(k2, 1, 0.5, 0.25)

+g2d(k1, k2, 100, 0.5, 0.01, 0.5, 0.01)+g2d(k1, k2, 50,−0.5, 0.0025, 0.5, 0.0025)

k1, k2 ∈
[
− 1; 1

]
, g and g2d are Gaussians:

g(k, a, b, c) = a · exp(− (k − b)2

2c2
)

g2d(k1, k2, a, b, c, d, e) = a · exp(−(
(k1− b)2

2c2
+

(k2− d)2

2e2
))

58

9

fit2 has a local optimum at (k1 = −0.5; k2 = 0.5), and a global optimum at
(k1 = 0.5; k2 = 0.5). A GSA on Counterexample II (See Fig. 3), shows that k1
can be considered as an influential parameter and k2 as a non-influential one.

A progressive refinement strategy (Approach 2) is compared to a plain opti-
misation (full search space) using a classical EA, with the settings reported in
Table 4.3. Over 100 runs, the full search always finds the global optimum whereas
the restart strategy (Approach 2) always get stuck on the local optimum (Fig.
4.3).

Fig. 4. Counterexample II. Statistics of
100 runs on Counterexample II with a
classical EA.

Population size µ = 2000

Offsprings size λ = 1800

Number of full search : 250
generations Approach 2 : 50

then 200

Tournament selection Size = 2

BLX-α Crossover p = 1.

Log normal self p = 1. τ =
√

2
adaptive mutation

Number of Runs 100

Table 2. Counterexample II. EA parameter
setting, full search space and Approach 2.

This behaviour is due to the fact that the function is deceptive: when consid-
ering only k1 for optimisation, and fixing k2 to 0, the function has a maximum of
11.14 for k1 = −0.5 and a local maximum of 11.04 for k1 = 0.5. Thus, the first-
stage optimisation concentrates the population around the line k1 = −0.5, which
prevents the second stage from finding the global peak positioned at k1 = 0.5.

The same set of experiments has been performed using CMA-ES with two
settings: a first one letting the CMA-ES self-tune its population size, the sec-
ond one using a larger population size with the idea of artificially maintaining
diversity. The results are not reported here, but in both cases, we noticed that
Approach 2 was bringing deceiving information to the algorithm, and delayed
or even prevented convergence.

4.4 Counterexample III

The third counterexample is based on a multi-objective problem, to better shed
light on the potential limits of the method presented in [7]. A bi-objective min-

59

10

imisation problem on a two parameters space has been derived using the fit2
function. A small offset has been put on parameter k1 for the second objective,
as follows:

fitObj1(k1, k2) = −fit2(k1, k2)

fitObj2(k1, k2) = −fit2(k1 + 0.05, k2)

The theoretical Pareto front is located in the (k1, k2) parameter space, on
the segment

[
(0.45, 0.5); (0.5, 0.5)

]
. A sub-optimal Pareto front also exists on the

segment
[
(−0.55, 0.5); (0.5, 0.5)

]
.

As expected, a GSA on Counterexample III provides similar information on
the behaviour of the two objective functions as for Counterexample II : k1 is
influential on both objectives whereas k2 is not (See Fig. 5).

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity
 in

de
x

va
lu

e

Total effect indices
First order indices

k1 k2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity
 in

de
x

va
lu

e

Total effect indices
First order indices

Fig. 5. Counterexample III. Sensitivity analysis on objective 1 (left) and on objective
2 (right). For both objectives, the total effect index for k1 is much higher than for k2.

The restart strategy is compared to a classical approach, using the NSGA-II
algorithm. The settings for NSGA-II are given in Table 4.4. The restart strategy
always ends up near the sub-optimal Pareto front, whereas the classic strategy
finds solutions near the optimal Pareto front. A typical result is displayed in Fig.
4.4.

For facilitating comparison, two performance metrics have been computed on
100 runs (see Fig. 7). The hypervolume indicator [24] computes the volume of the
dominated portion of the objective space. A high hypervolume value means that
the solutions are well spread along the objective space and/or are close to the
optimal Pareto front. The convergence indicator [5] computes a distance between
the current solution front and a predefined set of good solutions. Here, solutions
have been taken on the theoretical Pareto front. A low value corresponds to a
good approximation of the Pareto front.

60

11

ve

ve

Fig. 6. Counterexample III. Typical
Pareto front obtained with a classical
NSGA-II and with the two steps restart
strategy.

Population size 250

Number of full search : 250
generations Approach 2 :

50 then 200

Number of 100
Runs

Table 3. Settings for NSGA-II on
Counterexample III.

Fig. 7. Counterexample III. Convergence metric (left) and hypervolume metric
(right) averaged on 100 runs using NSGA-II and a population size of 250.

61

12

Fig. 8. Various sensitivity analyses on three sub-spaces for Counterexample I: param-
eters influences vary a lot !

5 Discussion

The counterexamples presented in Section 4 shed light on the fact that sensitiv-
ity analysis techniques may deliver misleading information to the optimisation
process. A possible explanation is that GSA is based on a statistical analysis
over a given parameter range. In this way it provides an averaged viewpoint on
each parameter, and it is clear that averaging may hide many fine details that
are important for optimisation purposes. Another problem is due to the fact
that the results of a GSA may drastically vary with the choice of the param-
eter range. It often happens that a parameter is influential on some subspace
and not on another. Fig 8 illustrates this effect for Counterexample I: when
k1, k2 ∈

[
− 1; 1

]
, k1 is the parameter that has almost all the influence, whereas

k2 is almost non-influential. But on other areas, results can be the opposite:
for instance if k1, k2 ∈

[
− 0.1; 0.1

]
, k1 is regarded as non-influential, while k2

becomes predominant.

The question of an efficient use of GSA inside an optimisation procedure is
raised: GSA is, in itself, extremely time consuming, and this cost has not been
taken into account in the previous experiments. It seems obvious that GSA,
based on a stochastic sampling of the full search space or of an area of it, con-
sumes a computational time that may sometimes be better spent by perform-
ing an optimisation process. Additionally, the averaged information provided
by GSA may hide some interesting irregular areas where global optima could

62

13

be found. Finally, adaptive refinement methods, like Approach 2 presented in
this paper, or the one proposed in [7], need to identify a non-negligible subset
of non-influential parameters, which is not always the case, especially for com-
plex optimisation problems. More progressive strategies may be imagined, but
once again with all the risks tied to an assessment of the relative importance of
parameters averaged over a given area.

6 Conclusions

GSA is a technique able to deliver information on how the uncertainty in the
inputs of a system might influence uncertainty in its outputs. Since this data
is acquired through a stochastic sampling of the search space, different research
lines exploited the intuitive synergy between GSA and EAs, using the informa-
tion to reduce the dimensionality of the search space, or to choose the variables
on which to optimise first.

In this paper, we presented three case studies, specifically designed to pro-
vide deceiving information to sensitivity analysis used during an optimisation
process. As a result, stochastic optimisation biased by this information has been
experimentally proven unable to reach the global optimum. A simple progres-
sive refinement optimisation scheme based on parameter prioritisation such as
in [7] may work on some functions, but there is a risk of falling into a local
optimum, from which escaping might prove to be hard. Even if parameter pri-
oritisation might work better for multi-objective problems, thanks to a better
diversity preservation mechanism necessary for a correct sampling of Pareto
fronts, a multi-objective counterexample is still rather easy to design. This was
the purpose of counterexample III.

An interesting point for further developments could be to determine in which
cases GSA is beneficial. From this study we can conjecture that regularity of the
fitness function may play an important role. If global sensitivity analysis has been
proven to be puzzling to optimisation in some cases, local sensitivity analysis
however remains interesting.Sobol indices computed locally for instance may be
useful for tuning mutations, in the same spirit as what has been developed in
[14], but with an associated computational cost to be taken into account.

References

1. Barichard, V., Hao, J.K.: Resolution d’un probleme d’analyse de sensibilite par
un algorithme d’optimisation multiobjectif. In: 5eme conference francophone de
Modelisation et SIMulation (MOSIM 2004), Nantes. pp. 59–66 (2004)

2. Beyer, H.G., Sendhoff, B.: Robust optimization–a comprehensive survey. Computer
methods in applied mechanics and engineering 196(33), 3190–3218 (2007)

3. Chabin, T., Tonda, A., Lutton, E.: Is global sensitivity analysis useful to evolution-
ary computation? In: Proceedings of the Companion Publication of the 2015 on
Genetic and Evolutionary Computation Conference. pp. 1365–1366. ACM (2015)

4. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it easea. In: Parallel
Problem Solving from Nature PPSN VI. pp. 891–901. Springer (2000)

63

14

5. Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective
optimizations. In: Proceedings of the Fourth Asia-Pacific Conference on Sim-
ulated Evolution and Learning (SEAL’02),(Singapore). pp. 13–20. Proceedings
of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL’02),(Singapore) (2002)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on 6(2),
182–197 (2002)

7. Fu, G., Kapelan, Z., Reed, P.: Reducing the complexity of multiobjective water
distribution system optimization through global sensitivity analysis. Journal of
Water Resources Planning and Management 138(3), 196–207 (2011)

8. Goldberg, D., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3(5), 493–530 (1989)

9. Goldberg, D.: Genetic algorithms and walsh fuctions: II. Deception and its analysis.
Complex Systems 3(2), 153–171 (April 1989)

10. Goldberg, D.: Genetic algorithms and walsh functions: I. A gentle introduction.
Complex Systems 3(2), 129–152 (April 1989)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation 9(2), 159–195 (2001)

12. Kargupta, H.: The gene expression messy genetic algorithm. In: International Con-
ference on Evolutionary Computation. pp. 814–819 (1996)

13. Leblanc, B., Lutton, E.: Bitwise regularity and ga-hardness. In: ICEC 98, May 5-9,
Anchorage, Alaska (1998)

14. Lutton, E., Lévy Véhel, J.: Pointwise regularity of fitness landscapes and the per-
formance of a simple es. In: CEC’06. Vancouver, Canada (July, 16-21 2006)

15. Lutton, E., Véhel, J.L.: Hölder functions and deception of genetic algorithms. IEEE
transactions on Evolutionary computation 2(2), 56–72 (July 1998)

16. Müller, C., Paul, G., Sbalzarini, I.: Sensitivities for free: Cma-es based sensitivity
analysis. Tech. rep., ETH Zurich (2011)

17. Paul, G., Müller, C., Sbalzarini, I.: Sensitivity analysis from evolutionary algorithm
search paths. Tech. rep., ETH Zurich (2011)

18. Rajeev, S., Krishnamoorthy, C.: Genetic algorithms-based methodologies for design
optimization of trusses. Journal of Structural Engineering 123(3), 350–358 (1997)

19. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., Tarantola, S.: Global Sensitivity analysis, The Primer. John Wiley
& Sons (2008)

20. Saltelli, A., Annoni, P.: How to avoid a perfunctory sensitivity analysis. Environ-
mental Modelling & Software 25(12), 1508–1517 (2010)

21. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates. Mathematics and computers in simulation 55(1-3), 271–280
(2001)

22. Stonedahl, F., Wilensky, U.: Evolutionary robustness checking in the artificial
anasazi model. In: AAAI Fall Symposium: Complex Adaptive Systems (2010)

23. Tang, Y., Reed, P., Wagener, T., Van Werkhoven, K., et al.: Comparing sensitivity
analysis methods to advance lumped watershed model identification and evalua-
tion. Hydrology and Earth System Sciences Discussions 11(2), 793–817 (2007)

24. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algo-
rithms—a comparative case study. In: Parallel problem solving from na-
ture—PPSN V. pp. 292–301. Springer (1998)

64

65

Quasi-random numbers improve the CMA-ES on
the BBOB testbed

Olivier Teytaud

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud),
bat 490 Univ. Paris-Sud 91405 Orsay, France, teytaud@lri.fr

Abstract. Pseudo-random numbers are usually a good enough ap-
proximation of random numbers in evolutionary algorithms. But quasi-
random numbers follow a different idea, namely they are aimed at being
more regularly distributed than random points. It has been pointed out
in earlier papers that quasi-random points provide a significant improve-
ment in evolutionary optimization. In this paper, we experiment quasi-
random mutations on a well known test case, namely the Coco/Bbob
test case. We also include experiments on translated or rescaled versions
of BBOB, on which we get similar improvements.

1 Introduction

Monte Carlo is a classical method for computing approximate integrals. They
can also be used directly for optimization; this is the simple random search
algorithm. Evolutionary algorithms can be viewed as an improved form of ran-
dom search, adaptively modifying the probability distribution in order to fo-
cus on the optimum. While Monte Carlo integration has been upgraded to
Quasi Monte Carlo (also known as quasi-random), most evolution strategies
use pseudo-random numbers, aimed at approximating random numbers, and
not Quasi Monte Carlo, in spite of a few promising works in that direction. This
might be due to lack of extensive experimental results on some classical testbeds;
the purpose of this paper is to do this extensive experiment of quasi-random mu-
tations in the Bbob/Coco benchmark.

In this paper we recall the state of the art in the use of quasi Monte Carlo
in evolution strategies (Section 2), and then experiment an existing quasi Monte
Carlo evolutionary algorithm on the Bbob/Coco framework.

2 Derandomization in evolution strategies

Evolution strategies[1] have been “derandomized” in several manners: use of
covariance matrix[2, 3], and use of quasi-random points. We here consider the
latter. It can be considered independently of the first and we will indeed use per-
form experiments in an algorithm which includes covariance matrix adaptation.

Low-dispersion or quasi-random points have been used for derandomizing the
random search[4–6], or evolutionary algorithms[7] or other randomized optimiza-
tion algorithms[8]. We here refer mainly to [9, 10], using quasi-random points

66

for derandomizing the mutations in the CMA-ES algorithm[11]. The quasi-
randomized version of CMA is termed DCMA, which stands for derandomized-
CMA.

Some important elements about quasi-random points follow. Computational
cost is not a good reason for discarding quasi-random sequences. The compu-
tational cost for generating quasi-random points is negligible and indeed of-
ten smaller than for classical pseudo-random numbers[12, 13]. Quasi-random se-
quences are different from pseudo-random sequences. Quasi-random numbers
are not a special case of pseudo-random numbers. Pseudo-random sequences
are aimed at imitating random sequences, whereas quasi-random sequences are
aimed at doing better, thanks to a better uniformity. Additionally, modern quasi-
random sequences have a random part[14]. Quasi-random points have low dis-
crepancy, decreasing as the inverse of the number of points (within logarithmic
factors), whereas pseudo-random numbers and random numbers, by design, have
discrepancy decreasing as the inverse of the square root of the number of points.
Pseudo-random numbers are an approximation of random numbers, whereas
quasi-random numbers are qualitatively different. The weaknesses of old quasi-
random sequences (such as non-scrambled Halton sequences), which were often
worse than random sequences in high dimension, have been overcome thanks to
randomized quasi-random sequences; these sequences have the good properties
of quasi-Monte Carlo methods and are at least as performant as Monte Carlo
methods in most (if not all) cases[15–19].

3 Experimental results

We follow the experimental setup proposed in “exampleexperiment.m” provided
in the Bbob/Coco downloads; a comment in the file states that the number
of function evaluations should be increased, so we increase to 100 × D with D
the dimension for the strict Bbob/Coco setting in Section 3.1, which will be
extended to 2000D in Section 3.3. We will also check translated or rescaled
versions of Bbob. All experiments are performed with initial point (0, 0, . . . , 0)
and initial step-size 1. The version of CMA-ES is the Matlab/Octave one as of
the time of submission. All quasi-random numbers are obtained by the scrambled
Halton method.

3.1 Experimental results in the Bbob/Coco setting

In this section, we produce results using the Bbob/Coco framework, without
any change except the increase of the number of evaluations to 100 × D (we
increased this because it is recommended in the Bbob/Coco sample file to do
so). The Bbob/Coco framework has been used in several conferences.Results are
presented in Fig. 7 (frequency of success depending on the number of evaluations,
for different precision levels). Fig. 1 presents the scatter plots, i.e. the x-axis is
the computation time for reaching some precision for the default CMA whereas
the y-axis is the computation time for reaching the same precision for DCMA. All

67

graphs are obtained by Bbob/Coco automatically, so that there is no parameter
choice by ourselves. All experiments use BBOB V13.09.

3.2 Experiments in the parallel setting

We reproduce the results above in the parallel setting. We will assume here that
we consider a problem in which the computational cost is mainly in the fitness
evaluations, and that function evaluations have an approximately constant com-
putational cost, so that increasing the population size is a natural solution for
parallelization: the population size is the number of processors.

We set the population size to 20×D, where D is the dimension, and do not
modify anything else in the Bbob/Coco framework. Results are presented in Fig.
2 (frequency of approximate solving on the y-axis for the number of evaluation
given on the x-axis).

68

0 1 2 3 40

1

2

3

4

1
Sp

he
re

2 3 4 52

3

4

5

2
El

lip
so

id
 s

ep
ar

ab
le

0 1 2 3 4 50

1

2

3

4

5

3
Ra

st
rig

in
 s

ep
ar

ab
le

0 1 2 3 4 50

1

2

3

4

5

4
Sk

ew
 R

as
tr

ig
in

-B
ue

ch
e

se
pa

r

1 2 31

2

3

5
Li

ne
ar

 s
lo

pe

1 2 3 4 51

2

3

4

5

6
At

tr
ac

tiv
e

se
ct

or

0 1 2 3 4 50

1

2

3

4

5

7
St

ep
-e

lli
ps

oi
d

1 2 3 4 5 61

2

3

4

5

6

8
Ro

se
nb

ro
ck

 o
rig

in
al

0 1 2 3 4 50

1

2

3

4

5

9
Ro

se
nb

ro
ck

 ro
ta

te
d

2 3 4 52

3

4

5

10
 E

lli
ps

oi
d

2 3 4 52

3

4

5

11
 D

is
cu

s

2 3 4 52

3

4

5

12
 B

en
t c

ig
ar

0 1 2 3 4 5 60

1

2

3

4

5

6

13
 S

ha
rp

 ri
dg

e

0 1 2 3 4 50

1

2

3

4

5

14
 S

um
 o

f d
iff

er
en

t p
ow

er
s

0 1 2 3 4 50

1

2

3

4

5

15
 R

as
tr

ig
in

0 1 2 3 4 5 60

1

2

3

4

5

6

16
 W

ei
er

st
ra

ss

0 1 2 3 4 5 60

1

2

3

4

5

6

17
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10

0 1 2 3 4 5 60

1

2

3

4

5

6

18
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10
00

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

19
 G

rie
w

an
k-

Ro
se

nb
ro

ck
 F

8F
2

0 1 2 3 4 50

1

2

3

4

5

20
 S

ch
w

ef
el

 x
*s

in
(x

)

0 1 2 3 4 50

1

2

3

4

5

21
 G

al
la

gh
er

 1
01

 p
ea

ks

0 1 2 3 4 50

1

2

3

4

5

22
 G

al
la

gh
er

 2
1

pe
ak

s

0 1 2 3 4 5 60

1

2

3

4

5

6

23
 K

at
su

ur
as

0 1 2 3 4 50

1

2

3

4

5

24
 L

un
ac

ek
 b

i-R
as

tr
ig

in

Fig. 1. Experimental results (scatterplots) for the default Bbob framework. For each
graph, corresponding to one function from f1 to f24 in Bbob/Coco, the x-axis is the
run length for the default CMA in log-10 scale, whereas the y-axis is the run length in
log-10 scale for the quasi-randomized version, i.e. DCMA. CMA is better than DCMA
for function f18, in the sense that there are more points above the diagonal than below.
DCMA is better for the 22 other functions.

69

Fig. 2. Experiments on Bbob with popu-
lation size forced to a larger value 20×D
where D is the dimension. Success rates
for different number of function evalua-
tions as in Fig. 7. Left: results with the
default CMA. Right: results with quasi-
randomization (DCMA). Results are usu-
ally better for DCMA, but the difference
is smaller than with the standard popula-
tion size of CMA.

Fig. 3. Results in the original Bbob set-
ting but with larger numbers (2000D) of
function evaluations. Left: results with the
default Cma. Right: results with quasi-
randomization. The difference is smaller
than in the other cases.

Dimension 5
CMA DCMA

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24,5-D1: 24/24

-1: 22/24

-4: 22/24

-8: 22/24

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24,5-D1: 24/24

-1: 22/24

-4: 22/24

-8: 22/24

Dimension 20
CMA DCMA

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24,20-D1: 23/24

-1: 18/24

-4: 17/24

-8: 17/24

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24,20-D1: 23/24

-1: 19/24

-4: 18/24

-8: 18/24

Fig. 4. Results in the parallel setting (20D
as population) and with larger numbers
of function evaluations (10000D). Left: re-
sults with the default Cma. Right: results
with quasi-randomization. Results similar
to the standard case.

Dimension 5
CMA DCMA

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D1: 24/24
-1: 18/24
-4: 16/24
-8: 15/24

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D1: 24/24
-1: 20/24
-4: 18/24
-8: 17/24

Dimension 20
CMA DCMA

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,20-D1: 20/24
-1: 15/24
-4: 13/24
-8: 13/24

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,20-D1: 21/24
-1: 15/24
-4: 12/24
-8: 11/24

Fig. 5. Comparison between CMA and
DCMA on the rescaled testbed. The dif-
ference between CMA and DCMA is simi-
lar to the difference in the original BBOB
testbed; CMA outperforms DCMA on f19.

70

Dimension 5
CMA DCMA

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D1: 24/24
-1: 18/24
-4: 16/24
-8: 15/24

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D1: 24/24
-1: 19/24
-4: 17/24
-8: 17/24

Dimension 20
CMA DCMA

0 1 2 3
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,20-D1: 20/24
-1: 14/24
-4: 11/24
-8: 11/24

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,20-D1: 20/24
-1: 16/24
-4: 13/24
-8: 12/24

Fig. 6. Comparison between CMA and
DCMA on the translated testbed. In di-
mension 5 DCMA outperforms CMA, but
in dimension 20 it is the case only for
curves 1, and -1; for -8 CMA outperforms
DCMA and for -4 it is the same. The
higher the better.

Fig. 7. Experimental results (percentage
of success for different numbers of func-
tion evaluations; each curve corresponds
to a different success criterion in terms of
simple regret) for the default Bbob frame-
work. Left: results with the default Cma.
Right: results with DCMA. DCMA is usu-
ally faster. Fig. 1 presents the same results
as scatter plots.

71

3.3 Experiments with larger numbers of iterations

We come back to the original Bbob/Coco setting of Section 3.1, but with 2000×D
function evaluations in dimension D. Results are presented in Fig. 3 and still
show a superiority of DCMA but with a smaller difference. Detailed results show
a strong superiority for f12, f15, f16, f17, f18, f19, f23, f24.

3.4 Experiments with large population size and large numbers of
iterations

We come back to the Bbob/Coco setting of Section 3.2, i.e. population size equal
to 20D where D is the dimension, but with 10000 × D function evaluations
in dimension D. Results are presented in Fig. 4 and Fig. 8 and still show a
superiority of DCMA, though not for all functions.

4 Experiments with modified BBOB

In this section, we rescale the BBOB testbed. As in the original experiments
(Section 3.1), we use 100D function evaluations. Instead of working on f(x), we
work on f(x/1000). Results are presented in Fig. 5 and 9. The superiority of
DCMA over CMA is bigger, suggesting that derandomized mutations improve
the robustness w.r.t an imperfect initialization (guessing the initial step-size is
not that easy in real situations) leads to a roughly linear landscape.

5 Experiments with another modified BBOB

In this section, we translate the BBOB testbed. As in the original experiments
(Section 3.1), we use 100D function evaluations. Instead of working on f(x), we
work on f(x + 7) (+7 is added coordinate-wise, i.e. all d decision variables are
shifted in dimension d). Results are presented in Fig. 6 and 10. The improvement
by DCMA over CMA is bigger than in the original BBOB.

6 Conclusion

The derandomization proposed in [10] basically works. There are settings
in which the difference is large, and settings in which the effect of quasi-
randomization is minor; but it is rarely detrimental. The contribution of this
paper are (i) confirming this superiority on the BBOB testbed (ii) efficiency of
DCMA compared to CMA is preserved with large population sizes (iii) it is pre-
served in all Bbob dimensions (v) we confirm that the improvement is better in
multimodal settings; this is consistent with [20].

We perturbated the BBOB testcase, just by changing the scale by a factor
1000, or by translating functions by +7. Results are essentially preserved.BBOB
does not provide confidence intervals. This is deeply rooted in BBOB: there is

72

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1
 S

p
h
e
re

2 3 4 5 6
2

3

4

5

6

2
 E

lli
p
so

id
 s

e
p
a
ra

b
le

1 2 3 4 5 6 7
1

2

3

4

5

6

7

3
 R

a
st

ri
g
in

 s
e
p
a
ra

b
le

1 2 3 4 5 6
1

2

3

4

5

6

4
 S

ke
w

 R
a
st

ri
g
in

-B
u
e
ch

e
 s

e
p
a
r

1 2 3 4
1

2

3

4

5
 L

in
e
a
r

sl
o
p
e

1 2 3 4 5 6 7
1

2

3

4

5

6

7

6
 A

tt
ra

ct
iv

e
 s

e
ct

o
r

1 2 3 4 5 6
1

2

3

4

5

6

7
 S

te
p
-e

lli
p
so

id

1 2 3 4 5 6
1

2

3

4

5

6

8
 R

o
se

n
b
ro

ck
 o

ri
g
in

a
l

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

9
 R

o
se

n
b
ro

ck
 r

o
ta

te
d

2 3 4 5 6
2

3

4

5

6

1
0
 E

lli
p
so

id

2 3 4 5 6
2

3

4

5

6

1
1
 D

is
cu

s

2 3 4 5 6 7
2

3

4

5

6

7

1
2
 B

e
n
t

ci
g
a
r

2 3 4 5 6
2

3

4

5

6

1
3
 S

h
a
rp

 r
id

g
e

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1
4
 S

u
m

 o
f

d
if
fe

re
n
t

p
o
w

e
rs

1 2 3 4 5 6
1

2

3

4

5

6

1
5
 R

a
st

ri
g
in

1 2 3 4 5 6
1

2

3

4

5

6

1
6
 W

e
ie

rs
tr

a
ss

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1
7
 S

ch
a
ff

e
r

F7
,
co

n
d
it

io
n
 1

0

1 2 3 4 5 6 7
1

2

3

4

5

6

7

1
8
 S

ch
a
ff

e
r

F7
,
co

n
d
it

io
n
 1

0
0
0

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

1
9
 G

ri
e
w

a
n
k-

R
o
se

n
b
ro

ck
 F

8
F2

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

2
0
 S

ch
w

e
fe

l
x
*s

in
(x

)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

2
1
 G

a
lla

g
h
e
r

1
0
1
 p

e
a
ks

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

2
2
 G

a
lla

g
h
e
r

2
1
 p

e
a
ks

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

2
3
 K

a
ts

u
u
ra

s

1 2 3 4 5 6 7
1

2

3

4

5

6

7

2
4
 L

u
n
a
ce

k
b
i-

R
a
st

ri
g
in

Fig. 8. Scatterplots in the parallel setting as in Section 3.2 (population size 20D) but
with larger numbers of function evaluations (10000D); text in Section 3.4. For each
graph, corresponding to functions f1 to f24 in the Bbob/Coco framework, the x-axis
is the run length for the default CMA in log-10 scale, whereas the y-axis is the run
length in log-10 scale for the quasi-randomized version. DCMA outperforms CMA in
the sense that there are more points below the diagonal than above for most functions,
but the difference is often small; the difference is bigger for f3, f6, f12, f15, f16, f23, f24.
CMA outperforms DCMA for f4 and f20.

73

0 1 2 3 40

1

2

3

4

1
Sp

he
re

1 2 3 4 51

2

3

4

5

2
El

lip
so

id
 s

ep
ar

ab
le

0 1 2 3 4 50

1

2

3

4

5

3
Ra

st
rig

in
 s

ep
ar

ab
le

0 1 2 3 4 50

1

2

3

4

5

4
Sk

ew
 R

as
tr

ig
in

-B
ue

ch
e

se
pa

r

1 2 31

2

3

5
Li

ne
ar

 s
lo

pe

1 2 3 4 51

2

3

4

5

6
At

tr
ac

tiv
e

se
ct

or

0 1 2 3 4 50

1

2

3

4

5

7
St

ep
-e

lli
ps

oi
d

1 2 3 4 51

2

3

4

5

8
Ro

se
nb

ro
ck

 o
rig

in
al

0 1 2 3 4 50

1

2

3

4

5

9
Ro

se
nb

ro
ck

 ro
ta

te
d

2 3 4 52

3

4

5

10
 E

lli
ps

oi
d

2 3 4 52

3

4

5

11
 D

is
cu

s

2 3 4 52

3

4

5

12
 B

en
t c

ig
ar

0 1 2 3 4 5 60

1

2

3

4

5

6

13
 S

ha
rp

 ri
dg

e

0 1 2 3 4 50

1

2

3

4

5

14
 S

um
 o

f d
iff

er
en

t p
ow

er
s

0 1 2 3 4 50

1

2

3

4

5

15
 R

as
tr

ig
in

0 1 2 3 4 5 60

1

2

3

4

5

6

16
 W

ei
er

st
ra

ss

0 1 2 3 4 5 60

1

2

3

4

5

6

17
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10

0 1 2 3 4 5 60

1

2

3

4

5

6

18
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10
00

0 1 2 3 4 5 60

1

2

3

4

5

6

19
 G

rie
w

an
k-

Ro
se

nb
ro

ck
 F

8F
2

0 1 2 3 4 50

1

2

3

4

5

20
 S

ch
w

ef
el

 x
*s

in
(x

)

0 1 2 3 4 50

1

2

3

4

5

21
 G

al
la

gh
er

 1
01

 p
ea

ks

0 1 2 3 4 50

1

2

3

4

5

22
 G

al
la

gh
er

 2
1

pe
ak

s

0 1 2 3 4 5 60

1

2

3

4

5

6

23
 K

at
su

ur
as

0 1 2 3 4 50

1

2

3

4

5

24
 L

un
ac

ek
 b

i-R
as

tr
ig

in

Fig. 9. Comparison between CMA and DCMA on the rescaled testbed. The difference
between CMA and DCMA is similar to the difference in the original BBOB testbed.
The improvement is visible on nearly all functions except f19 in the sense that there
are more points below than above the curve. The difference is clearer on multimodal
functions.

74

0 1 2 3 40

1

2

3

4

1
Sp

he
re

2 3 4 52

3

4

5

2
El

lip
so

id
 s

ep
ar

ab
le

0 1 2 3 4 50

1

2

3

4

5

3
Ra

st
rig

in
 s

ep
ar

ab
le

0 1 2 3 4 50

1

2

3

4

5

4
Sk

ew
 R

as
tr

ig
in

-B
ue

ch
e

se
pa

r

1 2 31

2

3

5
Li

ne
ar

 s
lo

pe

1 2 3 4 51

2

3

4

5
6

At
tr

ac
tiv

e
se

ct
or

0 1 2 3 4 50

1

2

3

4

5

7
St

ep
-e

lli
ps

oi
d

1 2 3 4 51

2

3

4

5

8
Ro

se
nb

ro
ck

 o
rig

in
al

0 1 2 3 4 50

1

2

3

4

5

9
Ro

se
nb

ro
ck

 ro
ta

te
d

2 3 4 52

3

4

5

10
 E

lli
ps

oi
d

2 3 4 52

3

4

5

11
 D

is
cu

s

2 3 4 52

3

4

5

12
 B

en
t c

ig
ar

0 1 2 3 4 5 60

1

2

3

4

5

6

13
 S

ha
rp

 ri
dg

e

0 1 2 3 4 50

1

2

3

4

5

14
 S

um
 o

f d
iff

er
en

t p
ow

er
s

0 1 2 3 4 50

1

2

3

4

5

15
 R

as
tr

ig
in

0 1 2 3 4 5 60

1

2

3

4

5

6

16
 W

ei
er

st
ra

ss

0 1 2 3 4 5 60

1

2

3

4

5

6

17
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10

0 1 2 3 4 5 60

1

2

3

4

5

6

18
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10
00

0 1 2 3 4 5 60

1

2

3

4

5

6

19
 G

rie
w

an
k-

Ro
se

nb
ro

ck
 F

8F
2

0 1 2 3 4 5 60

1

2

3

4

5

6

20
 S

ch
w

ef
el

 x
*s

in
(x

)

0 1 2 3 4 50

1

2

3

4

5

21
 G

al
la

gh
er

 1
01

 p
ea

ks

0 1 2 3 4 50

1

2

3

4

5

22
 G

al
la

gh
er

 2
1

pe
ak

s

0 1 2 3 4 5 60

1

2

3

4

5

6

23
 K

at
su

ur
as

0 1 2 3 4 50

1

2

3

4

5

24
 L

un
ac

ek
 b

i-R
as

tr
ig

in

Fig. 10. Comparison between CMA and DCMA on the translated testbed. Each graph
represents a function. X-axis = number of function evaluations for reaching the target
precision for CMA. Y-axis = number of function evaluations for reaching the target
precision for DCMA. The difference between CMA and DCMA is similar to the differ-
ence in the original BBOB testbed. The improvement is visible on nearly all functions
(in the sense that we have more points below than above the curve), in particular
multimodal.

75

a finite set of functions, and therefore overfitting is always possible, a trivial
algorithm successively sampling the finite set of optima of BBOB instances for
the considered dimension would have excellent performance. Nonetheless, we
reproduced the results many times, and always got the same result, including
translations and rescaling. All tested frameworks have been presented.

We considered results with respect to the number of fitness evaluations, not
computation time; this is the standard Coco/Bbob methodology. The compu-
tational cost of the quasi-random part is negligible, indeed the computational
complexity of quasi-random numbers is often less than the one of pseudo-random
numbers. We decided to run experiments on the Bbob/Coco framework without
any adaptation so that at least the framework is not chosen specifically for the
experiments and results are neutral. There was no tuning at all and presented
results are the results of the first set of runs in each setting.

We now discussion limitations of the present paper. In the present work,
we just validated the derandomization of mutations by quasi-random numbers.
Other derandomizations, based on symmetries as the one proposed in [21], might
provide additional improvements; these two derandomizations can be combined.
In the present paper we combine quasi-Monte Carlo and Covariance Matrix
Adaptation, we could have symmetrized sampling combined with quasi-Monte
Carlo and Covariance Matrix Adaptation, all together. Our experiments are
performed with the scrambled Halton sequence. We do not claim that other, in
particular older Quasi-Monte Carlo sequences would be as efficient. It is well
known that old Quasi Monte Carlo sequences were not that good, in particular
in high dimension[18]. There are now many good quasi-random sequences in the
literature. Maybe other quasi-random sequences would provide better results.

The experiments were performed without any modification of CMA other
than adding the quasi-random part, i.e. replacing arz = random gaussian by
arz = quasi random gaussian (where arz is the notation in CMA for the mu-
tation before rescaling and applying the covariance transformation). It is likely
that the optimal parameters for the covariance update and for the step-size up-
date are different from the optimal parameters for the original CMA. Therefore
there is likely margin for improving the results of the DCMA algorithm, which
is left as further work.

Quasi-random, or low-dispersion, can be used also for the restarts. This is
the purpose of other published works. We did not include quasi-random restarts
in order to separate both effects. Still, the performance improvement might be
due to a better spreading of the initialization over the domain. We conjecture
that the improvement related to quasi-random restarts will be larger than the
one with quasi-random mutations - the purpose of this paper is basically that
we can also include quasi-randomization in mutations.

References

1. H.-G. Beyer, The Theory of Evolution Strategies, ser. Natural Computing Series.
Springer, Heideberg, 2001.

76

2. N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaption,” in Proc. of the IEEE
Conference on Evolutionary Computation (CEC 1996). IEEE Press, 1996, pp.
312–317.

3. H.-G. Beyer and B. Sendhoff, “Covariance matrix adaptation revisited - the CMSA
evolution strategy,” in Proceedings of PPSN, G. Rudolph, T. Jansen, S. M. Lucas,
C. Poloni, and N. Beume, Eds., 2008, pp. 123–132.

4. H. Niederreiter, “Low-discrepancy and low-dispersion sequences,” J. Number The-
ory, 1988.

5. ——, Random Number Generation and Quasi-Monte-Carlo Methodes. Society of
Industrial and Applied Mathematics, 1992.

6. S. R. Lindemann and S. M. LaValle, “Incremental low-discrepancy lattice methods
for motion planning,” in Proceedings IEEE International Conference on Robotics
and Automation, 2003, pp. 2920–2927.

7. S. Kimura and K. Matsumura, “Genetic algorithms using low-discrepancy se-
quences.” in GECCO, 2005, pp. 1341–1346.

8. A. Georgieva and I. Jordanov, “A hybrid meta-heuristic for global optimisation
using low-discrepancy sequences of points,” Computers and Operations Research,
- special issue on hybrid metaheuristics, In press.

9. O. Teytaud and S. Gelly, “DCMA, yet another derandomization in covariance-
matrix-adaptation,” in GECCO, D. Thierens et al. , Ed., London Royaume-Uni,
2007, pp. 955–922. [Online]. Available: http://hal.inria.fr/inria-00173207/en/

10. O. Teytaud, “When does quasi-random work?.” in PPSN, ser. Lecture Notes
in Computer Science, G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and
N. Beume, Eds., vol. 5199. Springer, 2008, pp. 325–336. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ppsn/ppsn2008.html#Teytaud08

11. N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evo-
lution strategies,” Evolutionary Computation, vol. 11, no. 1, 2003.

12. T. Warnock, “Computational investigations of low-discrepancy point sets,” in In:
S.K. Zaremba, Editor, Applications of Number Theory to Numerical Analysis (Pro-
ceedings of the Symposium), University of Montreal, 1972, p. 319343.

13. ——, “Computational investigations of low-discrepancy point sets ii,” in In: H.
Niederreiter and P.J.-S. Shiue, Editors, Monte-Carlo and Quasi-Monte-Carlo
Methods in Scientific Computing, Springer, Berlin, 1995.

14. M. Mascagni and H. Chi, “On the scrambled halton sequence,” Monte-Carlo Meth-
ods Appl., vol. 10, no. 3, pp. 435–442, 2004.

15. X. Wang and F. Hickernell, “Randomized halton sequences,” Math. Comput. Mod-
elling, vol. 32, pp. 887–899, 2000.

16. B. Tuffin, “A new permutation choice in halton sequences,” Monte-Carlo and
Quasi-Monte-Carlo, vol. 127, p. 427435, 1997.

17. I. M. Sobol, “On the systematic search in a hypercube,” Siam journal on Numerical
Analysis, vol. 16, no. 5, pp. 790–793, Oct. 1979.

18. A. Owen, “Multidimensional variation for quasi-Monte-Carlo,” S. University, Ed.,
2004.

19. B. Vandewoestyne and R. Cools, “Good permutations for deterministic scrambled
halton sequences in terms of l2-discrepancy,” Computational and Applied Mathe-
matics, vol. 189, no. 1,2, p. 341:361, 2006.

20. G. Chaslot, J.-B. Hoock, F. Teytaud, and O. Teytaud, “On the huge benefit
of quasi-random mutations for multimodal optimization with application to
grid-based tuning of neurocontrollers.” in ESANN, 2009. [Online]. Available:
http://dblp.uni-trier.de/db/conf/esann/esann2009.html#ChaslotHTT09

77

21. S. Gelly, J. Mary, and O. Teytaud, “On the ultimate convergence rates for isotropic
algorithms and the best choices among various forms of isotropy,” in Parallel Prob-
lem Solving from Nature-PPSN IX. Springer, 2006.

78

79

Progressive Differential Evolution on Clustering
Real World Problems

Vincent Berthier

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud)
Bat 660 Claude Shannon Univ. Paris-Sud, 91190 Gif-sur-Yvette, France

Email: {firstname.lastname}@inria.fr

Abstract. In this paper, we assess the performances of Differential Evo-
lution on real-world clustering problems. To improve our results, we in-
troduce Progressive Differential Evolution, a small modification of Differ-
ential Evolution which aims at optimizing a small number of parameters
(eg. one cluster) at the beginning, and incrementally increase the number
of optimized parameters.

1 Introduction

While many benchmarks used in the optimisation community to evaluate algo-
rithms are based on purely artificial functions such as [20] and [10], it can only
be the first step in what ultimately is aimed at solving real world problems.
Some recent initiatives went in that direction (see [8] for example), proposing
new ways to assess the performances of optimisation algorithms.

In this paper, by comparing our results on one such benchmark, we (i) show
that the Differential Evolution algorithm is very efficient on clustering prob-
lems and (ii) propose Progressive Differential Evolution, which starts with a low
number of parameters to optimise and gradually increases it.

Section 2 describes the benchmark we used to compare our results to other
algorithms and Section 3 validates our approach. Section 4 recalls the Differ-
ential Evolution algorithm and the “DE/curr-to-best/1” variant we used while
Section 5 introduces Progressive Differential Evolution. In Section 6 we compare
our results to the state of the art.

2 Continuous Real-World Representative benchmark

Most of the existing testbeds used to evaluate optimisation algorithm compare
their performances on artificial functions, such as the sphere, the ellipsoid or the
Rosenbrock function to cite the most notable ones. With the improvements of the
algorithms, more complex functions were introduced with some specific proper-
ties such as rotation, non separability, multimodality and so on, but ultimately,
most testbeds are completely artificial.

While this is by no mean uninteresting, the ultimate goal in optimisation is
to solve real world problems. The gap between artificial functions - as complex

80

2 Vincent Berthier

as they are - to real world issues seems too large to directly apply what we know.
As such, new testbeds, with some real world properties are advisable.

One of such propositions comes from [7] and revolves around clustering prob-
lems that have interesting properties to evaluate optimisation algorithms: chal-
lenging, scalable, easy to understand and implement, and most of all, their data
can - and should - come from real world examples. Each cluster is used as a
vector of coordinates in the parameters’ space of data, which allows us to use
optimisation algorithms on those problems.

The three problems used here are the Iris [6], the Ruspini [15] and the German
Town [18] datasets, all of them widely used in the clustering community to
evaluate the performances of their own algorithms, and rooted in the real world.
More importantly, [12] computed the global optimum for those datasets from two
to ten clusters, which allows us to assess the performances of the algorithms. The
German Town points are defined in 3D, the Iris ones in 4D and for Ruspini it is
in 2D.

Along with a k-means clustering algorithm, [7] studied the performances of
three black-box algorithms: CMA-ES [9] (one with standard population size, one
with an increased population), Nelder-Mead [13] and Random-Search. One of the
conclusions is that even if the k-means algorithm converges very quickly, it is
often beaten by CMA-ES (with increased population size) in term of quality of
the solution found. Thus, complete black-box algorithms are able to outperform
problem specific ones.

3 Implementation validation

In order to compare results obtained on our platform using Evolving Objects
(see [11]), we ran the benchmark on two CMA-ES with the same configuration
as [7]: one has default parameters, one has a population size of µ = 50 and

λ = 100. In both cases, we stopped a run when fbest ≤ f∗ + f∗

1e15 (ie. the
optimum is reached), when the best fitness stagnated for too long or when the
allocated budget was consumed. This budget was set to 2e5 function evaluations
(all budgets in this paper are expressed in terms of function evaluations).

As can be seen in Table 1, the mean fitnesses we were able to obtain are
comparable to the ones reported in [7]: sometimes better, sometimes worse, but
never by far (except in high dimension where the results are degraded, probably
due to different parameters). This allows us to validate our implementation, and
serves as a baseline for the rest of our work.

In the original paper, the number of function evaluations was reported with
the mean fitnesses. The given explanation is that the main focus of the exercise
being the fitness - and not so much failures or successes - the required number of
function evaluations to get a result is not that important: each algorithm should
have the time - the budget - to reach the optimum or at least converge.

While this is perfectly valid, we don’t feel comfortable to do so as it weakens
the comparison between algorithms. Instead of reporting the mean number of
function evaluations used, we will prefer the SP1 measure as defined in [1] :

81

Progressive Differential Evolution on Clustering Real World Problems 3

D k f∗ CMA-ES(50,100) CMA-ES(50,100) SP1 CMA-ES CMA-ES SP1

G 02 6.02546e11 6.025472e11 (2.8e-04) 8.3400e03 (6.4e02) 1.172558e12 (7.6e11) 4.8798e04 (3.3e04)
03 2.94506e11 4.486461e11 (1.5e11) 4.2083e04 (2.6e04) 8.196432e11 (1.2e12) ∞
04 1.04474e11 3.362127e11 (1.4e11) 3.9970e05 (1.8e05) 7.629370e11 (4.7e11) ∞
05 5.97615e10 2.049802e11 (1.4e11) 6.8410e05 (2.0e05) 7.488858e11 (1.2e12) ∞
06 3.59085e10 1.585765e11 (1.5e11) ∞ 8.818792e11 (6.3e11) ∞
07 2.19832e10 1.051648e11 (1.1e11) ∞ 6.463187e11 (7.5e11) ∞
08 1.33854e10 1.068587e11 (9.3e10) ∞ 7.005948e11 (7.1e11) ∞
09 7.80442e09 2.780667e11 (3.1e11) ∞ 1.003192e12 (9.7e11) ∞
10 6.44647e09 5.869352e11 (5.2e11) ∞ 7.677317e11 (6.5e11) ∞

I 02 1.52348e2 1.523480e02 (6.4e-14) 1.8344e04 (5.0e02) 1.523542e02 (3.0e-03) ∞
03 7.88514e01 7.885144e01 (2.5e-14) 7.2048e04 (2.2e03) 1.279512e02 (1.2e02) ∞
04 5.72285e01 5.836730e01 (3.9e00) ∞ 9.728522e01 (3.5e01) ∞
05 4.64462e01 4.766177e01 (1.7e00) ∞ 1.330878e02 (1.3e02) ∞
06 3.90400e01 4.149195e01 (2.9e00) ∞ 1.292478e02 (1.3e02) ∞
07 3.42982e01 4.037920e01 (3.5e00) ∞ 7.892632e01 (4.5e01) ∞
08 2.99889e01 3.739813e01 (4.2e00) ∞ 7.750688e01 (5.4e01) ∞
09 2.77861e01 3.831817e01 (5.3e00) ∞ 8.018775e01 (7.6e01) ∞
10 2.58341e01 5.653196e01 (6.9e01) ∞ 9.553900e01 (1.0e02) ∞

R 02 8.93378e04 8.933783e04 (5.0e-12) 6.8260e03 (1.1e03) 8.933783e04 (3.1e-11) 3.5903e04 (5.0e03)
03 5.10635e04 5.110393e04 (4.6e01) 2.0453e04 (5.3e03) 5.473043e04 (9.8e03) ∞
04 1.28811e04 1.288105e04 (0.0e00) ∞ 2.046652e04 (1.5e04) ∞
05 1.01267e04 1.032449e04 (5.0e02) ∞ 3.209521e04 (1.4e04) ∞
06 8.57541e03 8.919118e03 (5.1e02) 2.5490e05 (1.7e04) 2.605724e04 (1.3e04) ∞
07 7.12620e03 7.634386e03 (4.4e02) 7.7641e05 (4.9e04) 2.309534e04 (6.1e03) ∞
08 6.14964e03 6.635902e03 (3.9e02) ∞ 2.061007e04 (5.2e03) ∞
09 5.18165e03 7.464273e03 (3.6e03) ∞ 1.906988e04 (5.3e03) ∞
10 4.44628e03 1.095691e04 (5.0e03) ∞ 1.696298e04 (5.6e03) ∞

Table 1: Average fitness results and SP1 measure (mean and standard devia-
tion) for CMA-ES and CMA-ES(50,100). An SP1 measure of ∞ means that the
optimum could not be reached for any of the 50 runs. Results are give for the
German Town (G), Iris (I) and Ruspini (R) datasets for all values of k.

SP1 = E(Ts)
ps

, where E(Ts) is the expected number of function evaluations used
in a successful run and ps is the probability to get a success for a given run.

This measure has some disadvantages (eg. when the success probability is
0), but it allows a more accurate comparison between algorithms, in particular
when using restarts. In such a way, two possible strategies (aiming for a 100%
success rate no matter the cost or allowing restarts if the solution is not quickly
found) are both possible and their performances can be compared without bias
one way or another.

4 Differential Evolution

While the first work on this clustering benchmark obviously did not try to com-
pare each and every possible optimisation algorithm, we felt that given the speci-
fities of the problem, Differential Evolution (DE) [19] could perform quite well.
This feeling is substantiated by [4] in which DE is said to perform very well on
a lot of testbeds.

Built around crossovers, the DE algorithm replaces part of a given individual
with two or more others. Many different variants of DE exist, each one defining

82

4 Vincent Berthier

the crossovers rule. The one we chose was “DE/curr-to-best/1”. For a given
generation, we then have:

DE/curr-to-best/1: U(0, 1) is a random uniformly distributed number between 0 and
1, CR is the crossover rate parameter, f1 and f2 are two real numbers, Best is the best
individual in the generation, and f is the evaluation function, n is the dimension of a
point in the given dataset.

for each individual I do
Y ← I
Randomly choose A and B, two individuals distinct from I and Best
Randomly select an index R ∈ {1, . . . , n}
for all i ∈ {1, . . . , n} do

if i = R or U(0, 1) < CR then
Y (i)← I(i) + f1(A(i)−B(i)) + f2(Best(i)− I(i))

end if
end for
if f(Y) < f(I) then

Replace I by Y
end if

end for

The only difference from “DE/best/1” is thus the update formula, which is
Y (i)← Best(i) + f1(A(i)−B(i)).

In the spirit of [7], we didn’t try to tune the algorithm’s parameters. Instead,
in the absence of a standard recommendation, we set CR = 0.5, f1 = f2 = 0.8
for a population size of 30. The initialisation points were randomly drawn with
a normal distribution of mean the average of the range of the variables, with a
standard deviation of a third of that average. We used here the same stopping
criteria as with CMA-ES in our previous experiment.

5 Progressive Differential Evolution

In some of our first trials, when studying the reasons for failures to reach the
optimum, we reached the conclusion that in a third of the failed runs, this failure
was due to falling in a local optimum. As can be seen on Figure 1 with a 3e4
budget, in most cases the failures to reach the optimum are simply due to a
lack of budget: the clusters found are not exactly at the optimum but centered
around them. In fact, by increasing the budget, we saw that indeed, those points
went to the optimum.

In the second case however, we can see that the points found are symmetri-
cally opposed to the optimum solution, one cluster at the top, two at the bottom.
This configuration on the Ruspini problem with k = 3 gives a fitness of ≈ 51155,
which is only slightly worse than the optimum of ≈ 51063. As such, there is only
a very small probability that any mutation would get to the real optimum close
enough to improve the solution.

83

Progressive Differential Evolution on Clustering Real World Problems 5

−20 0 20 40 60 80 100 120 140
−50

0

50

100

150

200

Data points
True clusters
Failed clusters

Clusters locations in case of failures
Ruspini dataset with k = 3 and 3e4 evaluations budget

Fig. 1: Clusters position on failure cases, Ruspini dataset with k = 3

In order to avoid this, we introduced “Progressive Widening”, known as the
Sieves Method [16] in statistics. The basic idea is to start optimising a small
number of clusters, and to increase that number at some point in the process:

PDE: kmax is the desired number of clusters, N is the dimensionality of each point, R
determines the number of generations to do with k clusters

Initialise population
k ← 1
while not stop do

for i = 0 to R do
Run one generation of DE on the k ·N first parameters

end for
k ← min(k + 1, kmax)

end while

Here, we chose to use R = 100, which means that every one hundred genera-
tion, we increase the number of parameters to optimise until we reach n · kmax.

Of course, the fact that we optimise k clusters doesn’t mean that the others
“disappear”: they are still taken into account in the evaluation, but don’t move
from their initial position, which is the center of the search space. This means
that even when training k clusters, there is always one more that can be selected
as the nearest from a given point. While we could have completely removed them
from the evaluation, we felt that this would have reduced the black-box context
of the problem.

In fact, one could argue that we are only able to use Progressive Widening
by weakening the black-box setting of the problem. Indeed, since we know the

84

6 Vincent Berthier

dimension of the problem, we know that to add a cluster we have to add N
parameters. We don’t think this is an issue however, this knowledge being as
much part of the specification of the problem as the definition of the search
space.

6 Results

6.1 DE vs CMA-ES

D k f∗ DE DE SP1 PDE PDE SP1

G 02 6.02546e11 6.025472e11 (5.0e-04) 5.6160e03 (6.6e02) 6.025472e11 (5.0e-04) 9.1242e03 (2.9e02)
03 2.94506e11 3.006674e11 (4.3e10) 9.0893e03 (1.8e03) 2.945066e11 (0.0e00) 1.3496e04 (2.6e02)
04 1.04474e11 1.500823e11 (8.1e10) 2.3898e04 (1.6e04) 1.044747e11 (0.0e00) 1.9849e04 (4.5e02)
05 5.97615e10 7.423346e10 (3.6e10) 4.5462e04 (4.3e04) 6.065579e10 (6.3e09) 2.7124e04 (1.6e03)
06 3.59085e10 4.776401e10 (3.8e10) 4.8107e04 (2.3e04) 3.611288e10 (1.4e09) 3.3399e04 (1.5e03)
07 2.19832e10 3.176165e10 (1.6e10) 2.0357e05 (1.1e05) 2.423709e10 (5.1e09) 8.8896e04 (3.5e04)
08 1.33854e10 2.182272e10 (8.3e09) ∞ 1.639762e10 (4.1e09) ∞
09 7.80442e09 1.562879e10 (6.3e09) ∞ 1.127751e10 (2.9e09) ∞
10 6.44647e09 1.281459e10 (6.2e09) ∞ 8.793075e09 (4.3e09) 2.2032e06 (3.4e05)

I 02 1.52348e02 1.523480e02 (0.0e00) 8.9892e03 (2.7e03) 1.523480e02 (0.0e00) 1.3222e04 (3.5e02)
03 7.88514e01 8.032188e01 (1.0e01) 2.0023e04 (1.3e04) 7.885212e01 (1.5e-03) 2.1965e04 (7.9e02)
04 5.72285e01 5.867260e01 (5.2e00) 5.0221e04 (2.7e04) 5.722847e01 (4.8e-14) 2.6411e04 (5.6e03)
05 4.64462e01 4.978281e01 (4.3e00) 1.3932e05 (8.1e04) 4.847058e01 (1.8e00) 1.7655e05 (5.8e04)
06 3.90400e01 4.210588e01 (3.4e00) 1.9240e05 (7.7e04) 3.961203e01 (1.5e00) 1.2713e05 (4.7e04)
07 3.42982e01 3.735682e01 (3.4e00) 1.3620e06 (3.7e05) 3.506627e01 (1.6e00) 4.1865e06 (0.0e00)
08 2.99889e01 3.288639e01 (3.3e00) 1.0018e06 (1.2e05) 3.084912e01 (1.4e00) 9.5156e05 (1.3e05)
09 2.77861e01 2.928749e01 (2.2e00) 1.6612e06 (1.1e05) 2.855921e01 (1.2e00) 1.3116e06 (2.8e05)
10 2.58341e01 2.795759e01 (2.7e00) 3.5490e06 (0.0e00) 2.695760e01 (9.1e-01) 7.8765e06 (0.0e00)

R 02 8.93378e04 8.933783e04 (0.0e00) 5.9892e03 (2.3e03) 8.933783e04 (0.0e00) 1.0646e04 (4.0e02)
03 5.10635e04 5.109841e04 (4.5e01) 2.0758e04 (9.1e03) 5.106348e04 (4.1e-11) 1.1740e04 (4.0e02)
04 1.28811e04 1.288105e04 (0.0e00) ∞ 1.288105e04 (0.0e00) 1.1175e06 (0.0e00)
05 1.01267e04 1.015393e04 (1.9e02) ∞ 1.013935e04 (1.1e01) ∞
06 8.57541e03 8.664380e03 (2.5e02) 1.0505e05 (8.3e04) 8.660781e03 (1.1e02) 9.7329e04 (2.2e04)
07 7.12620e03 7.179452e03 (1.4e02) 1.0829e05 (7.4e04) 7.193774e03 (1.0e02) 1.6640e05 (1.0e04)
08 6.14964e03 6.246995e03 (3.6e02) 1.7645e05 (1.2e05) 6.168576e03 (3.4e01) 7.7184e04 (2.0e04)
09 5.18165e03 5.441820e03 (4.2e02) 2.8236e05 (1.3e05) 5.314655e03 (1.9e02) 1.3664e05 (5.8e04)
10 4.44628e03 4.694111e03 (4.3e02) 2.6013e05 (9.9e04) 4.622832e03 (8.4e01) 8.9633e05 (4.6e04)

Table 2: Average fitness results and SP1 measure (mean and standard deviation)
for DE and PDE. An SP1 measure of ∞ means that the optimum could not be
reach for any of the 50 runs. Results are give for the German Town (G), Iris (I)
and Ruspini (R) datasets for all values of k.

The results we obtained with DE shown in Table 2 and Figure 3 were very
good, often better - sometimes by far - than CMA-ES(50,100). The first striking
result is that DE more consistently reaches the optimum solution: in only five
cases (three on the German Town dataset, two on the Ruspini dataset) DE was
not able to reach the optimum at least once in the 50 runs reported here.

As such, it comes as no surprise that the average fitness obtained by DE
after 50 runs was improved in almost all cases (except on the Iris dataset when

85

Progressive Differential Evolution on Clustering Real World Problems 7

k ≤ 6 and on the Ruspini dataset with k = 3). While this improvement is not
necessarily ground breaking on the Ruspini dataset for example, it is much more
important on the German Town problem (see Figure 3a).

6.2 DE vs PDE

The effects of the Progressive Widening on DE were twofold: first, it globally
improved the average fitness across the board: in all but one trial (Ruspini with
k = 7), the mean fitness and associated standard deviation were better with
Progressive Widening than without. Once more, this is most notable on the
German Town problem. Furthermore, in only one case now (Iris dataset with
k = 10) is CMA-ES the best: on all other cases, PDE gets better results.

The second effect (shown in Table 3) was the one we expected: the success
rate improved, we find the optimum more often. Most notably, with k = 3 on
the Ruspini dataset, we went up from a 62% success rate to a full 100%: we no
longer fall in the local optimum reported in Figure 1, which was our goal when
adding Progressive Widening to DE.

In five cases though the rates went down but only in two cases was this
decrease important: from 58% to 20% on the Ruspini dataset with k = 7 (which
is also the only case where the mean fitness obtained by DE is better than PDE)
and from 32% to 6% still on the Ruspini dataset but with k = 10. Interestingly
here, while the success rate decreased by almost 30%, the mean fitness obtained
by PDE is still better than the one from DE.

In fact thanks to this, we can see that while the Progressive Widening works
very well in most instances in order to avoid a local minimum, in some rare
cases it is exactly the opposite, as we can see on Ruspini with k = 10. While
the solution found is often very good - there is not a huge difference between
DE and PDE mean fitness there - by plotting the proposed solution we see that
when PDE fails to reach the optimum and stagnates, it is because it fell in a
local minimum.

6.3 The cost of PDE

Given the fact that the budget and stopping criteria are the same for DE and
PDE, the SP1 measures reported in Table 2 mostly reflect the differences in suc-
cess rate we saw previously. In the few cases were both algorithm have (almost)
the same success rate, we can see that the SP1 measure is higher (or worse) for
PDE than for DE : the introduction of Progressive Widening is not without cost.

This is even more clearly illustrated in Figure 2, where some statistics on the
fitnesses of 50 runs of DE and PDE are plotted. On the first few evaluations, PDE
performs two orders of magnitude worse than DE, still one order of magnitude
worse after 5e3 evaluations, and it is not until at least 1.5e4 evaluations that
PDE performs at least as well as DE. While this is to be expected since until
then not all clusters are optimised, it is still something to take into account.

86

8 Vincent Berthier

(a) German Town dataset

k CMA(50,100) DE PDE

02 100 100 100
03 48 98 100
04 10 76 100
05 18 74 98
06 0 74 88
07 0 38 74
08 0 0 0
09 0 0 0
10 0 0 8

(b) Iris dataset

k CMA(50,100) DE PDE

02 100 100 100
03 100 86 84
04 0 56 100
05 0 28 28
06 0 32 50
07 0 4 2
08 0 6 8
09 0 4 8
10 0 2 2

(c) Ruspini dataset

k CMA(50,100) DE PDE

02 100 100 100
03 56 62 100
04 0 0 2
05 0 0 0
06 24 46 36
07 16 58 20
08 0 42 64
09 0 32 52
10 0 32 6

Table 3: Success rate for CMA(50,100), DE and PDE

7 Conclusion

DE performs very well on clustering problems, even when compared to clustering
algorithms or CMA-ES, the current state of the art on this benchmark. This, by
itself, is a very impressive result.

Our proposed variant of DE, PDE, gets even better results in most cases
illustrating the good impact the concept of Progressive Widening can have on a
black box algorithm.

In addition, we propose a baseline for the SP1 measure that will allow more
robust comparisons of algorithms on this benchmark in the future.

8 Further work

While still following the spirit of the original paper by not tuning the algorithms
parameters, there are still many possibilities to try and improve the results. Some
ways to do so include other mutations rules for DE (DE/rand/1, DE/best/1,
etc.), using Adaptive Differential Evolution, or other variants.

87

Progressive Differential Evolution on Clustering Real World Problems 9

0 5000 10000 15000 20000 25000 30000
Number of function evaluations

103

104

105

106

107

Fi
tn

es
s

Evolution of fitness for DE and PDE (Ruspini dataset with k = 6)

PDE Min
PDE Max
PDE mean
PDE median
DE Min
DE Max
DE Mean
DE Median

Fig. 2: Fitness statistics evolution on the Ruspini dataset with k = 6 with DE
and PDE. The Progressive Widening has a clear cost at the beginning of the
optimisation process.

Of course, another way could be to use the progressive strategy on other
algorithms when possible: for algorithms with covariance matrices such as CMA-
ES, CMSA [3] or even the self-adaptive with covariance algorithm [14] such a
change is not trivial. But for others like Particle Swarm Optimisation [5, 17] or
the other members of the Self-Adaptive family [2] (isotropic or anisotropic, 1+1,
etc.) this is quite straightforward.

The most interesting improvements could be done on the Progressive Widen-
ing concept. For example, knowing why in some instances it is more prone to
fall in a local minimum would be interesting.

Furthermore, we have seen that the Progressive Widening is not without cost.
To lessen that cost, instead of adding clusters (or parameters in the general case)
at fixed timesteps we could design a rule that dynamically adds them when
the fitness is reasonably stable. An intermediate step might be to add those
parameters after an increasing number of timesteps (evaluations or generations)
with a logarithmic rule for example, such that the more parameters are currently
optimised, the more time is spent on them before adding more.

88

10 Vincent Berthier

2 3 4 5 6 7 8 9 10
Number of clusters

100

101

R
at

io
to

op
tim

um
(lo

g
sc

al
e)

German Dataset

DEPW
DE
CMA50
CMA
KM
NM
RS

(a) German Towns dataset

2 3 4 5 6 7 8 9 10
Number of clusters

0

1

2

3

4

5

6

7

8

R
at

io
to

op
tim

um

Iris Dataset

DEPW
DE
CMA50
CMA
NM
RS
KM

(b) Iris dataset

2 3 4 5 6 7 8 9 10
Number of clusters

0

1

2

3

4

R
at

io
to

op
tim

um

Ruspini Dataset

DEPW
DE
CMA50
CMA
KM
NM
RS

(c) Ruspini dataset

Fig. 3: Performance as a ratio to the optimum (f̂
f∗) of results reported in the

original paper compared to DE and PDE with a 2e5 budget. From left to right
are PDE, DE, CMA-ES(50,100), CMA-ES, KM, NM and RS.

89

Progressive Differential Evolution on Clustering Real World Problems 11

References

1. Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolu-
tionary algorithm. In: Evolutionary Computation, 2005. The 2005 IEEE Congress
on. vol. 2, pp. 1777–1784. IEEE (2005), http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=1554903

2. Beyer, H.G.: The Theory of Evolution Strategies. Natural Computing Series,
Springer, Heideberg (2001)

3. Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited - the CMSA
evolution strategy. In: Rudolph, G., Jansen, T., Lucas, S.M., Poloni, C., Beume,
N. (eds.) Proceedings of PPSN. pp. 123–132 (2008)

4. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art.
IEEE Trans. on Evolutionary Computation 15(1), 4–31 (2011)

5. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: ,
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, 1995. MHS ’95. pp. 39–43 (Oct 1995)

6. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics 7(2), 179–188 (1936), http://onlinelibrary.wiley.com/doi/10.1111/
j.1469-1809.1936.tb02137.x/abstract

7. Gallagher, M.: Clustering Problems for More Useful Benchmarking of Opti-
mization Algorithms. In: Dick, G., Browne, W.N., Whigham, P., Zhang, M.,
Bui, L.T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K.C., Tang,
K. (eds.) Simulated Evolution and Learning, pp. 131–142. No. 8886 in Lec-
ture Notes in Computer Science, Springer International Publishing (Jan 2014),
http://link.springer.com/chapter/10.1007/978-3-319-13563-2_12

8. Gould, N.I.M., Orban, D., Toint, P.L.: Cuter and sifdec: A constrained and uncon-
strained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394
(2003)

9. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolu-
tion Strategies. Evolutionary Computation 9(2), 159–195 (Jun 2001)

10. Hansen, N., Auger, A., Ros, R., Finck, S., Posik, P.: Comparing Results of 31 Al-
gorithms from the Black-Box Optimization Benchmarking BBOB-2009. In: ACM-
GECCO Genetic and Evolutionary Computation Conference. Portland, United
States (Jul 2010), https://hal.archives-ouvertes.fr/hal-00545727, pp. 1689-
1696

11. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving Objects: A Gen-
eral Purpose Evolutionary Computation Library. In: Collet, P., Fonlupt, C., Hao,
J.K., Lutton, E., Schoenauer, M. (eds.) Artificial Evolution, pp. 231–242. No.
2310 in Lecture Notes in Computer Science, Springer Berlin Heidelberg (2002),
http://link.springer.com/chapter/10.1007/3-540-46033-0_19

12. du Merle, O., Hansen, P., Jaumard, B., Mladenovic, N.: An Interior Point Algo-
rithm for Minimum Sum-of-Squares Clustering. SIAM Journal on Scientific Com-
puting 21(4), 1485–1505 (Jan 1999), http://epubs.siam.org/doi/abs/10.1137/
S1064827597328327

13. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Com-
puter Journal 7(4), 308–313 (Jan 1965), http://comjnl.oxfordjournals.org/

content/7/4/308

14. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart
(1973)

90

12 Vincent Berthier

15. Ruspini, E.H.: Numerical methods for fuzzy clustering. Information Sciences
2(3), 319–350 (Jul 1970), http://www.sciencedirect.com/science/article/

pii/S0020025570800561

16. Shen, X., Wong, W.H.: Convergence Rate of Sieve Estimates. The Annals of
Statistics 22(2), 580–615 (Jun 1994), http://projecteuclid.org/euclid.aos/

1176325486

17. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: , The 1998 IEEE
International Conference on Evolutionary Computation Proceedings, 1998. IEEE
World Congress on Computational Intelligence. pp. 69–73 (May 1998)

18. Spaeth, H.: Cluster analysis algorithms for data reduction and classification of
objects (1980), http://cds.cern.ch/record/102044

19. Storn, R., Price, K.: Differential Evolution A Simple and Efficient Heuristic
for global Optimization over Continuous Spaces. Journal of Global Optimiza-
tion 11(4), 341–359 (Dec 1997), http://link.springer.com/article/10.1023/

A%3A1008202821328

20. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Ti-
wari, S.: Problem definitions and evaluation criteria for the cec 2005 special ses-
sion on real-parameter optimization. Tech. Rep. AND KanGAL Report #2005005,
IIT Kanpur, India (2005), http://public.cranfield.ac.uk/sims_staff/wcat/

cec2005/sessions/

91

92

Distributed Adaptive Metaheuristic Selection:
Comparisons of Selection Strategies

Christopher Jankee1, Sébastien Verel1 Bilel Derbel2, and Cyril Fonlupt1

1 Université du Littoral Côte d’Opale, LISIC
2 Université Lille 1, CRIStAL – CNRS – INRIA Lille

Abstract. In Distributed Adaptive Metaheuristics Selection (DAMS)
methods, each computation node can select, at run-time during the op-
timization process, one metaheuristic to be executed from a portfolio of
available metaheuristics. Within the DAMS framework, we investigate
different metaheuristic selection strategies which enable to choose locally
at each time step a metaheuristic to execute. We conduct a throughout
experimental analysis in order to better understand the accuracy and
the behavior of the proposed strategies, as well as their relative perfor-
mance. In particular, we analyze the impact of sharing metaheuristic
performance information between compute nodes and the relative effect
on each of the considered distributed selection strategies depending on
communication topology. Our experimental analysis is performed on the
simple one Max problem, for which the best metaheuristics that should
be executed at run-time are known, as well as on the more sophisticated
NK-landscapes for which non-linearity can be tuned.

1 Introduction

1.1 Motives

A challenging question accruing in practice when solving an optimization prob-
lem using evolution algorithms or metaheuristics is the choice of the relevant
algorithm, or at least the choice of the parameters of a given algorithm. This
choice should typically be guided by the specific features of the tackled problem,
even if in a black-box context, those features could be hard to extract.

In this context, a technique for algorithm selection consists in selecting the
‘best’ algorithm to solve a given problem. The original framework of algorithm
selection has been proposed by Rice [12]: First some problem features are ex-
tracted. According to those features, one algorithm is selected from a set of
available algorithms. Then the performance of the selected algorithm is mea-
sured on the problem. With the increasing number of available algorithms, and
the number of components that can take part in good algorithms, this framework
has become more and more popular. Instead of developing a new optimization
algorithm, the ”design” of relevant algorithm turns out to the identification of
the most suitable one or the most suitable components (See [10] for a recent
review on algorithm selection).

93

Similarly, the performance of metaheuristics heavily depends on the correct
choice of their parameters. Indeed, algorithm selection is related to parameter
setting, in the sense that parameters setting can be associated to a specific
algorithm, and vice-versa. Eiben et al. [4] propose to classify parameter setting
methods into two classes. In off-line tuning methods, an algorithm is selected
before applying it effectively. Some tuning methods use performance prediction
methods based on problem features such as in SATzilla [17], and some others are
based on searching in the set of possible algorithm or configurations such as in
racing technics [11]. In on-line control methods, the algorithm is selected during
the optimization process. At each round, an algorithm is selected from a portfolio
of algorithms according to the performance observed in previous rounds. On-line
algorithm selection can be modeled as a (dynamic) multi-armed bandit problem:
each arm is an optimization algorithm, the reward reflects the quality of solutions
produced by the algorithm, and the objective is to select the arms during the
optimization process in order to maximize the quality of the final solution. In this
context, the so-called Adaptive Operator Selection methods aims at selecting
sequentially an operator at each time step. To cite a few, Thierens [14] uses
probability matching and adaptive pursuit technics to perform the selection,
and Fialho et al. [6] propose different selection strategies based on the Upper
Confidence Bounds strategy with dynamics restart techniques. For continuous
optimization, on-line portfolio techniques have also been recently investigated
in [1] using specific reward functions specific to the continuous case.

In this paper, we extend the so-called Distributed Adaptive Metaheuristic
Selection (DAMS) framework [3] by investigating on-line portfolio methods in
a distributed environment. The DAMS framework is basically motivated by the
increasing number of parallel computing facilities (multi-cores, clusters, etc) and
the compute power that can offer when tackling hard optimization problems.
DAMS is also tightly related to Evolutionary Algorithms (EAs) based on the
Island model [15]. parallelize EAs. In such a model, the population is divided into
several subpopulations. Each compute node (an Island) applies an EA on those
subpopulations, and the subpopulations can interact within a migration phase
where solutions can be exchanged. In the context of on-line portfolio methods,
we are interested in a heterogeneous island model where each island applies its
own and possibly different EA. More precisely, the DAMS framework focuses
on setting up adaptive strategies to select at each round a relevant EA which is
applied to the local sub-population in order to maximize the performance of the
whole distributed system. The goal of this paper is to integrate new distributed
adaptive strategies and to study their impact within the DAMS framework. In
the rest of this paper, we first review some works related to DAMS. Then, we
propose a classification of distributed selection strategies into independent and
collective ones according to the information exchange. An experimental analysis
is then provided and the impact of the considered strategies is reported.

94

1.2 Related work

Two classes of parameters can be controlled in an island model: the parameters
related to the migration policy, and the parameters that define the algorithm at
each node.

Control of the migration policy: Candan et al. [2] propose to control the
migration policy on-line in an heterogeneous island model where each island can
apply its own EA. A parameter pij is used to define the migration rate between
islands i and j. According to the island performance in producing promising
solutions, the rates are updated using a reinforcement learning principle. Fer-
dandez et al. [5] propose a control method of the EA migration policy when the
population is 2d-spatially structured following a 2d-grid. The migration, and
thus the EA matting, is controlled by moving the solutions on the grid either
randomly, or towards a cell surrounded by similar solutions.

Control of the EA parameters: Instead of using the same parameters set-
ting in every island, in a heterogeneous island model, each island applies its own
algorithm. In order to demonstrate the usefulness of such heterogeneous model,
Tanabe et al. [8, 13] show that a collection of random parameters provides bet-
ter performance than a uniform static setting. The study focuses on continuous
optimization and differential evolution algorithms, and also on two classes of
combinatorial problems (QAP, TSP) using a simple genetic algorithm. Follow-
ing similar ideas, Garcia-Valdez et al. [7] showed that for distributed pool-based
EA which is another model of heterogeneous islands, a random set of parameters
used by a simple GA on the P-Peaks problems outperforms a static setting.

However, in a heterogeneous island model, random parameter setting is not
the only possibility. In fact, each EA associated to each island can be controlled
during the optimization process according to state of the search in past iterations.
For instance, Tongchim et al. [16] proposed to select the parameters (cross-over
and mutation) of a simple EA adaptively. Two set of parameters are compared
on the same compute node, and the best setting with the best solution is sent to
other islands. The authors showed that this kind of on-line mechanism improves
over static or random settings.

The DAMS framework [3] proposes to locally select at each round and for
each node a metaheuristic from a portfolio of metaheuristics in order to maximize
the performance of the whole distributed system. For each compute node using a
selection strategy, a metaheuristic is selected not only according to the previous
performance of the node, but also according to the performance observed and
communicated by neighboring nodes. In their paper [3], Derbel et al. propose a
simple but yet effective strategy called Select-Best-and-Mutate. In this paper,
we propose to analyze other alternative selection strategies taking inspiration
from existing multi-arm bandit strategies, but in a distributed (island) model.

95

2 Adaptive selection strategies for DAMS

We first recall the DAMS framework and the original Select-Best-and-Mutate se-
lection strategy. Alternative independent and collective selection strategies based
on classical multi-arms bandit strategies are then proposed.

2.1 DAMS and Select-and-Best-Mutate strategy

The Distributed Adaptive Metaheuristic Selection (DAMS) framework has been
introduced in [3]. Algo. 1 gives the original algorithm using a generic metaheuris-
tic selection strategy. DAMS is a heterogeneous island-like model algorithm. In
each compute node, a metaheuristic from a portfolio is applied on the local
subpopulation, and the metaheuristic could be different from one node to an-
other. The authors distinguish three basic levels that can be controlled during
one round of a DAMS algorithm: the distributed, the metaheuristic selection
and the atomic levels. At the distributed level, information between neighboring
nodes are shared, migration of solutions is achieved, and the reward of the meta-
heuristic that has been executed on the node is communicated to neighbors, and
vice-versa. At the metaheuristics selection level, one metaheuristic is selected
from the portfolio according to previously collected rewards. At the last level of
the algorithm, called ’the atomic low level’ in the original paper, the selected
metaheuristic is applied and the corresponding reward is computed.

The authors also proposed the so-called Select-Best-and-Mutate (SBM) to
be used at the selection level. SBM strategy is simply based on a metaheuristic
mutation rate pmut. With probability 1 − pmut, SBM selects the metaheuristic
having the best reward in the last round among all neighbors (including the cur-
rent node), and with rate pmut, SBM selects one random metaheuristic from the
portfolio M different from the best one. In others words, SBM has an intensifi-
cation component that selects the best rewarded metaheuristic at the previous
round from the neighboring metaheuristics, and a diversification component that
allows to explore new randomly selected metaheuristic. This strategy is related to
the well-known ε-greedy strategy in multi-armed bandit problem, which selects
the arm with the highest estimated expectation with rate 1 − ε, and uniformly
random arm with rate ε. In SBM, the reward of metaheuristic is the maximum
reward observed in the last round in the node and the neighboring nodes. There
is no long-term memory mechanism which computes an estimated average re-
ward from the previous rounds, and the maximum reward is estimated using the
neighboring nodes.

2.2 Independent vs. collective selection strategies

Similar to the distributed multi-arm bandit problem, in the distributed adap-
tive portfolio methods, the collaboration of the k compute nodes can contribute
to improve the estimation of the quality of metaheuristics, but with an addi-
tional communication cost due to information sharing between nodes. Hence,
a distributed metaheuristic selection strategy has to take care of this classical

96

Algorithm 1: DAMS algorithm for each computation node

Inputs: A portfolio of metaheuristics M
r ← Init Reward()
M ← Init Meta(M)
P ← Init Pop()
repeat

/∗ Distributed Level:

migration and information sharing ∗/
Send Msg(r,M,P) to each neighbor
P ← {} ; S ← {}
for each neighbor w do

Receive Msg(r′,M ′, P ′) from w
P ← P ∪ {P ′}
S ← S ∪ {(r′,M ′)}

P ← Update Population(P,P)
/∗ Metaheuristic Selection Strategy Level ∗/
M ← Select Meta(M, (r,M),S)
/∗ Atomic Low Level:

apply metaheuristic and compute reward ∗/
Pnew ← Apply(M,P)
r ← Reward(P, Pnew)
P ← Pnew

until Stopping condition is satisfied ;

trade-offs in distributed systems. Moreover, multi-arm bandit strategies are of-
ten a combination of two parts, one exploitation part which promotes the best
estimated arm, and one exploration part which looks at new random arms. The
exploration part is particularly important when facing a non-stationary problem.
The strategy should be able to explore arms for which the reward could have
changed. Therefore, when several computation nodes collaborate to improve the
metaheuristic quality estimation, the exploitation part could be reinforced too
much forcing the strategy to converge too quickly in a non-stationary scenario.

We distinguish two extreme types of selection strategies according to the in-
formation sharing between nodes. In independent selection strategies, the meta-
heuristic selection depends solely on the reward information produced locally by
the node. In collective selection strategies, the selection takes into account the
reward information communicated by the neighboring nodes. For example, the
SBM strategy is a collective strategy, and a baseline strategy which selects a
metaheuristic uniformly at random is an independent strategy.

2.3 Independent selection strategies

First, we can derive a simple independent selection strategy from the original
SBM strategy. In fact, instead of selecting the best rewarded metaheuristic from
neighboring nodes, we can select the best rewarded metaheuristic in the last W
rounds and executed locally by a node – no reward information from neighbors is

97

used. Accordingly, the original collective SBM strategy will be denoted as SBMc,
and the newly designed independent SBM by SBMi. Notice that SBMi comes
with two parameters, the original mutation rate pmut, and the windows size W .

The so-called Adaptive Pursuit (AP) belongs to the class of probability
matching algorithms. AP is a classical adaptive selection strategy used in opti-
mization [14], and can be used as an independent selection strategy. In adaptive
pursuit algorithm, a metaheuristic i is applied at time step t in proportion to
a probability pi,t, and those probabilities are updated according to the rewards
of metaheuristics. This technique is then divided into three parts: the update
of the reward estimation q̂i,t of the metaheuristics, the update of the proba-
bilities pi,t, and the selection of the metaheuristic. Eq. 1 defines the update of
estimated reward of the metaheuristic i. Variable ri,t is the reward at round t of
the metaheuristic i, and parameter α ∈ (0, 1] is the adaptation rate.

q̂i,t+1 = q̂i,t + α . (ri,t − q̂i,t) (1)

The update of the probabilities pi,t is given by Eq. 2 where i∗t denotes the
metaheuristic with the best q̂i,t:

pi,t+1 =

{
pi,t + β . (pmax − pi,t), if i = i∗t
pi,t + β . (pmin − pi,t), otherwise.

(2)

For the best estimated metaheuristic, the probability converges to pmax with
the learning rate β, for the other metaheuristics, the probability converges to
pmin. At round t, the AP selects the metaheuristic at random in proportion of
probability pi,t. This independent strategy is denoted by APi.

Several Upper Confidence Bound (UCB) algorithms are used in the context
of adaptive metaheuristic selection (see [6] for a review). Let ni,t denotes the
number of times the ith metaheuristic is applied up to round t, and let q̂i,t
denotes the average empirical reward of metaheuristic i. At each round t, UCB
selects the metaheuristic that maximizes the following quantity:

q̂i,t + C .

√
2 log(

∑
j nj,t)

ni,t

Parameters C enable to control the exploitation / exploration trade-off. This
independent selection strategy is denoted by UCBi.

The UCB strategy is an optimal strategy for stationary problems with inde-
pendent arms which is actually not the case metaheuristics control. The average
empirical reward could be far from the current new reward. To overcome this
drawback, the average empirical reward can be computed over a slicing windows
by considering the last W rounds. This variant is denoted by UCB-Wi.

Finally, a dynamic version of UCB is introduced in [6] and uses the Page-
Hinkley test to detect whether the empirical rewards collected for the best meta-
heuristic have changed significantly. For more details, the reader is referred to
page 6 in [6]. This selection strategy will be denoted by UCBP-PHi, and it
requires two parameters: a restart threshold γ and a robustness threshold δ.

98

2.4 Collective selection strategies

Each of the above-mentioned independent selection strategies can be used to de-
fine a collective selection strategy that takes into account the reward information
exchanged with neighboring nodes. In collective SBM which is the original one,
the best rewarded metaheuristic is selected from the set of neighboring nodes. In
collective AP, the rewards of all neighbors are iteratively used to update the es-
timation of reward q̂i. Notice that the order of the update could have an impact
on the estimation. So, at the initialization phase, a pre-established order be-
tween neighboring nodes is randomly chosen. Then, after the updates of reward
q̂i, the probability pi is updated once for all neighbors. In the collective versions
of UCB strategies, the empirical average r̂i is also updated using the rewards of
neighboring nodes. The numbers of times ni,t that each metaheuristic is applied
is also update according to the information given by each nodes. Notice that in
that case, the order of the update does not matter. The selected metaheuristic
is the metaheuristic selected after taking into account all neighbors information.
Those collective strategies versions are denoted respectively SBMc, APc, UCBc,
UCB-Wc, UCB-PHc.

3 Experimental Analysis

3.1 Experimental Setup

Following previous works [16, 3, 6, 2] on adaptive portfolio selection, we also use
the well known one-Max problem, which counts the number of 1 in a bit string.
In a similar scenario, we use a portfolio of four (1 + λ)-ES: from one parent
solution, the algorithm produces λ solutions according to a stochastic operator
and selects the best one for the next iteration. Four operators are used: three
operators respectively flip exactly 1, 3 and 5 bits, and the last one uniformly
flips each bit with rate 1/N where N is the bit strings size set to N = 1000.

We use an elitism migration mechanism. Each node (island) sends their cur-
rent solution to their neighboring nodes. Then, each node receives all solutions
from the neighboring nodes. The best solution from the set containing the re-
ceived solutions and the current solution of the node replace the current solu-
tion of the each node. The DAMS algorithm stops when the global maximum is
found by one node of the distributed system, when the number of rounds exceeds
Tlimit = 5.104. 200 runs are computed for each possible strategy and topology.
The performance of algorithms is measured either with the number of rounds to
reach the global maximum, either using the expected running time (ERT). ERT
is expected running time to reach a level fitness of the algorithm with simulated
restart. It is equal to Es[T] + (1− p̂s)/p̂s.Tlimit where p̂s the estimated success
rate, and Es[T] is the average number of rounds when the fitness level is reached.

We study four topologies of network: the complete topology where each node
is connected to all others nodes, a random topology where there is an edge
between two nodes with probability p = 0.1, the grid topology which is a two-
dimensional regular square grid where each node is connected to the four nearest

99

neighbors, and the circle topology where the nodes are connected to two others
nodes to form a circle. The size of the networks is n ∈ {4, 16, 32, 64}. In order to
have the same number of fitness evaluations in one round whatever the network
size n, the λ parameter is set to 64/n.

A couple of parameters are used in the different selection strategies. For the
SBM strategies, the value of metaheuristic mutation rates are pmut ∈ {0.001,
0.002, 0.01, 0.1}. The window size of the SBMi is set to 5. For AP, the extreme
values are set to pmin = 0.1 and pmax = 1. The adaptive and the learning
rates are α ∈ {0.1, 0.25, 0.5, 0.75, 1} and β ∈ {0.1, 0.25, 0.5, 0.75, 1}. For all the
UCB strategies, the parameter C values are {0.1, 0.5, 5, 25, 100}. For the variant
UCB-W, the set of windows sizes is {10, 100, 1000}. Following [6], the param-
eters of Page-Hinkley test are to δ = 0.15, the restart thresholds γ are from
{0.5, 0.75, 1, 2, 5, 10}. Moreover, 2 baseline strategies are used: the random one
(rnd.) select at random at each round a metaheuristic, and the constant one
(cst.) always select the same metaheuristic which is randomly chosen at the
beginning.

3.2 Computational Results

One-Max Overall Performance. From a purely distributed perspective, the
first interesting measure is the number of rounds it takes for an algorithm to find
the global maximum. The number of rounds provides an idea about the degree of
parallelism in an ideal scenario where the communication cost is assumed to be
negligible compared to the cost of function evaluation. The relative performance
of the different strategies is summarized in Table 1. The best performing pa-
rameters are set for each strategies. Several observations can be extracted from
Table 1. First, the performance of the different strategies are consistent with the
considered configurations in the sense that they can overall be ranked similarly
independently of the topology type or graph size. More importantly, we remark
that the impact of exchanging rewards information between node has a strong
impact on performance. Interestingly, this impact is positive in the case of SBM
and AP, whereas it is not when considering UCB. In fact, SBMc appears to
overall outperform all the other strategies and APc appears to performing best
when both considering the circle, grid and random topologies with large number
of nodes. In contrast, the performance of the four implemented versions of UCB
is deteriorating systematically as the information from neighbors is incorporated.
We attribute this to the fact that this information is actually pushing the UCB
strategy to diversify more the search as soon as some operators (even with a
good rewards) has been used by other neighboring nodes. UCB is less effective
than random selection. The C-value which tunes the exploration-exploitation
tradeoff has no impact on this result. Indeed, we have performed an extended
sensitive analysis of parameter C (not presented here to save space) which does
not changed this result. This also suggests that the UCB strategy has to be
completely rethought in order to infer accurate exploration-exploitation tradeoff
in the dynamic distributed setting. Notice however, that independent UCB-HPi
is still able to provide very competitive results compared to SBMc and APc.

100

Table 1. For each topology and graph size, number of selection strategies which sta-
tistically outperforms (according to the Wilcoxon test at confidence level p = 0.05) a
given strategy method for the one-Max problem with N = 1000. The 0 value is the
best one: no other strategy significantly outperforms the considered one.

Topo. Size cst. rand. SBMi SBMc APi APc
UCB

UCBi UCBc HPi HPc Wi Wc

circle 4 8 4 1 0 7 7 10 11 2 3 3 3

circle 16 4 6 3 0 4 0 10 11 1 6 6 6

circle 32 4 6 3 1 4 0 10 11 2 6 6 9

circle 64 4 6 3 2 4 0 10 11 1 6 6 9

grid 4 8 4 1 0 4 9 10 11 2 4 3 3

grid 16 4 5 2 0 4 0 10 11 1 4 6 4

grid 32 4 5 3 1 4 0 10 11 1 4 4 6

grid 64 4 6 3 1 4 0 10 11 1 6 6 9

rnd. 4 7 3 0 0 5 7 10 11 0 3 3 3

rnd. 16 4 4 1 0 4 3 10 11 1 4 4 5

rnd. 32 4 4 3 1 4 0 10 11 2 4 4 9

rnd. 64 4 4 3 1 4 0 10 11 1 4 4 9

compl. 4 7 3 1 0 7 7 10 10 2 3 3 3

compl. 16 6 3 1 0 5 6 11 10 1 4 3 9

compl. 32 3 3 2 0 3 8 11 10 1 3 3 9

compl. 64 3 3 2 0 3 3 11 10 1 3 7 9

Average 4.875 4.312 2 0.4375 4.375 3.125 10.187 10.75 1.25 4.187 4.437 6.562

Sensitivity to parameters. In the previous discussion, we were focused on
the overall behavior of the different strategies for a fixed parameter setup. In
fact, one may wonder what is the impact is of the parameters used for every
strategy. This is illustrated in Fig. 1 where we give representative examples on
the sensitivity of SBM, AP and UCB-HP to different parameter settings both in
the case of an independent and a collective strategy. We can appreciate that SBM
is rather stable under different configurations although for the collective variant,
the impact of the mutation rate is slightly more pronounced (a small values
is advised). The same thing holds for the AP strategy where the algorithm is
robust to a wide range of values of α and β, with he exception of the adaption rate
α = 1 which is to be avoided since it promotes strong convergence in the reward
estimation. For the UCB-HP strategy, the value of C, which appears in the
confidence bound, plays an important role but only in the independent strategy.
For the collective strategy, where the information from neighbors is actually
deteriorating performance, the C-value does not seem to have any impact and
cannot help obtaining improved results.

101

 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400

 0.001 0.01 0.1 1

R
o
u
n
d
s

p

Circle
Complete

Random
Grid

 520
 530
 540
 550
 560
 570
 580
 590
 600
 610

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
o
u
n
d
s

β

α = 0.1
α = 0.25
α = 0.5

α = 0.75
α = 1

 500

 520

 540

 560

 580

 600

 620

 640

 0.1 1 10 100

R
o
u
n
d

C

Threshold = 0.75
Threshold = 1
Threshold = 2

 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400

 0.001 0.01 0.1 1

R
o
u
n
d
s

p

Circle
Complete

Random
Grid

 460

 480

 500

 520

 540

 560

 580

 600

 620

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R

o
u
n
d
s

β

α = 0.1
α = 0.25
α = 0.5

α = 0.75
α = 1

 550
 560
 570
 580
 590
 600
 610
 620
 630
 640

 0.1 1 10 100

R
o
u
n
d

C

Threshold = 0.75
Threshold = 1
Threshold = 2

Fig. 1. Average number of rounds to find the maximum of the one-Max problem as
function of the parameter values of different selection strategies. From left to right:
SBM, AP, UCP-HP strategies ; top: independent selection, bottom collective selection.

Parallelism. In the previous discussions, we were only interested in analyzing
the relative behavior of the strategies for a fixed topology. In particular, the
results of Table 1 do not allow us to appreciate the relative impact of different
topologies on the performance of each strategy. For this purpose, we show in
Fig. 2 the relative performance of SBM and AP in different configurations. It is
important to recall that the number of function evaluations at every single round
and for all the considered configurations is the same which means that the num-
ber of function evaluations needed overall in any of the considered configuration
is by the same multiplicative factor similar to the number of rounds depicted
in Fig. 2. This observation has an important impact, since then, we are able to
obtain different trade-offs when considering the number of exchanged messages
as an important indicator of parallel speed-ups that one could obtain when effec-
tively deploying our strategies in a real distributed setting. In fact, the number
of messages needed to exchange information is exactly the number of rounds
times the number of edges used in the considered topology. In the case of the
complete (resp, circle, grid, random) topology, the number of edges is n(n−1)/2
(resp. n − 1, O(n), O(p.n2)) where n is the number of nodes. From Fig. 2, we
can notice that the number of rounds stays stable for the complete and random
topology (except for 4 nodes) with the complete topology being slightly bet-
ter. However the number of rounds increases sharply for the circle and the grid
which we attribute to the increase of the topology diameter. Roughly speaking,
although the increase in the number of rounds for the circle and the grid is at
most by a factor of 2, the number of needed messages stays linear in the number
of nodes. This is to contrast with the complete topology where the increase in
the number of messages is polynomial. Hence, in a practical setting where the
cost of message-passing is non-negligible, we claim that the best choice would

102

 400

 600

 800

 1000

 1200

 1400

Com
plete

Random

Grid
Circle

R
o
u
n
d
s

Topology

4 nodes
16 nodes
32 nodes
64 nodes

 400

 600

 800

 1000

 1200

 1400

Com
plete

Random

Grid
Circle

R
o
u
n
d
s

Topology

4 nodes
16 nodes
32 nodes
64 nodes

 400

 600

 800

 1000

 1200

 1400

Com
plete

Random

Grid
Circle

R
o
u
n
d
s

Topology

4 nodes
16 nodes
32 nodes
64 nodes

 400

 600

 800

 1000

 1200

 1400

Com
plete

Random

Grid
Circle

R
o
u
n
d
s

Topology

4 nodes
16 nodes
32 nodes
64 nodes

Fig. 2. Average number of rounds to find the maximum (one-Max problem) according
to the topology and the number of nodes. From left to right and top to bottom: SBMi,
SBMc, APi, and APc strategies.

be the random topology which exhibits the most appealing tradeoffs in terms of
the number of rounds v.s. the number of messages exchanged overall.

NK-landscapes In this paper, we also consider a more sophisticated class of
problems captured by the so-called NK-landscapes. The family of NK-landscapes
constitutes a model of multimodal problems [9]. The search space is binary
strings of size N : {0, 1}N . N refers to the problem size, and K to the number
of bits that influence a particular position from the bit-string, i.e. the epistatic
interactions. The objective function f : {0, 1}N → [0, 1) to be maximized is
defined as follows.

f(x) =
1

N

N∑

i=1

fi(xi, xi1 , . . . , xiK)

where fi : {0, 1}K+1 → [0, 1) defines the component function associated with
each bit xi. By increasing the number of epistatic interactions K from 0 to (N −
1), NK-landscapes can be gradually tuned from smooth to rugged. In this work,
we set the position of these interactions at random. Component values are uni-
formly distributed in the range [0, 1).

Our interest in the NK-landscapes stems from the fact that usually different
bit-flip mutation rates are believed to provide different performances. To illus-
trate this claim, we show in Fig. 3, the empirical probability that a solution with
the fitness given by the x-axis is be improved if a uniform bit-flip operator with
rate c/N is applied, where c varies in the range {1, 2, 4, 8, 16}. We can clearly see
that the operator which is likely to provide an improvement depends strongly
of the attained fitness level. Hence, this kind of landscapes appears to be par-
ticularly interested to be studied within the DAMS framework. Accordingly, we

103

Table 2. Rank of the different strategies according to the topology and the number of
computation nodes for NK-landscapes with N = 1000 and K = 1, 4, 8.

Topo. Size unif. cst. rand. SBMi SBMc APi APc
UCB

UCBi UCBc HPi HPc Wi Wc

K = 1

compl. 16 0 9 6 3 7 12 2 1 10 4 5 8 11

compl. 64 0 10 7 6 1 4 9 12 3 2 5 11 8

circle 16 0 2 11 3 5 1 10 8 7 6 4 12 9

circle 64 0 7 8 2 1 6 4 12 9 3 10 11 5

average 0 7 8 3.5 3.5 5.75 6.25 8.25 7.25 3.75 6 10.5 8.5

K = 4

compl. 16 0 6 12 9 1 11 3 2 4 8 10 5 7

compl. 64 0 6 3 8 5 11 12 1 4 10 2 7 9

circle 16 1 11 12 8 4 5 6 3 7 0 2 10 9

circle 64 0 10 9 11 6 7 12 5 4 3 2 1 8

average 0.25 8.25 9 9 4 8.5 8.25 2.75 4.75 5.25 4 5.75 8.25

K = 8

compl. 16 1 3 9 0 11 7 6 2 10 4 8 5 12

compl. 64 0 12 4 10 3 6 9 11 2 5 8 1 7

circle 16 7 0 4 5 6 12 3 9 10 2 1 8 11

circle 64 0 2 12 3 11 8 9 5 10 7 1 4 6

average 2 4.25 7.25 4.5 7.75 8.25 6.75 6.75 8 4.5 4.5 4.5 9

perform the same experiments while considering different NK-landscapes with
N = 1000 and K ∈ {1, 4, 8}. The portfolio of metaheuristics is composed by
five (1 + λ)-ES based on the uniform bit-flip rate c/N with rates c = 1, 2, 4, 8,
and 16. We tune the parameters according to the results the one-Max problem:
pnut = 0.01 for SMB, α = 0.5 and β = 0.5 for AP, and C = 25 for UCB strate-
gies. Interestingly, we find that no significant differences can be reported between
any of the considered selection strategies when looking at the final fitness value
(this is nor reported due to space limitations). However, we are able to report
different behavior when examining the empirical expected running time (ERT)
to attain the median fitness value (computed over all configurations).

The ERT results are summarized in Table 2. In addition to adaptive selection
strategy, we also tested a uniform and static strategy, denoted unif in the table,
where every nodes share the same metaheuristic all along the execution. In the
table, we choose to present the performance of the best uniform-static strategy
which is not the same according to the topology and the number of nodes.
Perhaps, the most interesting observation is than the uniform-static strategy
is the best performing and none of the considered DAMS variants is able to
outperform it. This might be surprising at first sight, but not if we account for the
time required to learn the best metaheuristic to apply. In fact, when examining
carefully Fig. 3 in light of the information given by the empirical improvement
probability, we can see that the fitness level is increasing very abruptly for NK-

104

landscapes in the early stages of the search. Hence, the different fitness windows
where one has to choose the best operator are very tight which is to contrast with
the time it may need for a strategy to detect which operator is actually the best
to apply. As a consequence, even though the fixed operator used by a uniform
static strategy is not optimal in all the stages of the execution, it still does not
loose time in learning by testing less efficient operators. It worth-noticing that the
previous experiments raise the question of whether we really need to adapt the
search heuristics at runtime and does it really serve in practice? We argue that
the answer to this question is definitively yes. In fact, the general lessons that we
can learn from our experiments with the NK-landscapes can be formulated as
following. First, in a black-box scenario, the time during which a metaheuristic is
the best one depends strongly on the landscape. Hence, learning this landscape
at runtime is for sure a plausible alternative. Second, we need to study more
carefully the cost of the learning stage of selection strategy in function of the
considered landscape, and to design novel alternative adaptive strategy that
would be able to minimize the learning cost at the aim of improving efficiency.

0.0

0.2

0.4

0.6

0.50 0.55 0.60 0.65 0.70 0.75
fitness

Im
pr

ov
em

en
t p

ro
ba

bi
lit

y

c

1

2

4

8

16

100 101 102 103 104 105

Rounds

0.50

0.55

0.60

0.65

0.70

0.75

F
it
n
es

s

c = 1

c = 2

c = 4

c = 8

c = 16

100 101 102 103 104 105

Rounds

0.50

0.55

0.60

0.65

0.70

0.75

F
it
n
es

s

APc

SBMc

UCB-HPi

unif-static c=16

Fig. 3. Empirical improvement probabilities vs. fitness level (left). Fitness vs. rounds in
log-scale. Center: uniform-static, right: different strategies. NK-landscapes with K = 4.

4 Conclusion

In this paper, we investigate new adaptive strategies for distributed metaheuris-
tic selection. Accordingly, we explored the applicability of adaptive pursuit and
upper bound confidence based algorithms in the distributed setting where sev-
eral heterogeneous islands have to cooperate in order to select the most accurate
metaheuristic dynamically at runtime. In particular, we consider the possibil-
ity of incorporating the distributed information coming from the neighboring
islands and study its impact on the search behavior by considering independent
and collective schemes. We conduct a throughout experimental study in order
to better understand the major ingredients toward making such schemes suc-
cessful. We find that special care must be taken when attempting to use the
rewards observed distributively at different islands in order to obtain accurate

105

exploration-exploitation trade-offs. Besides, our study keeps open several ques-
tions that deserve further investigation in the future. For instance, we could
analyze the selection strategies on others benchmarks such as knapsack or graph
coloring problems. It would also be interesting to study the gain one can achieve
by the proposed strategies when effectively deployed in a real distributed test-
bed. In such a setting, the communication cost is very likely to introduce new
challenges; but the increasing power offered by modern computation systems is
worth to be investigated in order to derive highly efficient adaptive strategies.

References

1. P. Baudǐs and P. Poš́ık. Online black-box algorithm portfolios for continuous
optimization. In PPSN XIII, pages 40–49. Springer, 2014.

2. C. Candan, A. Goeffon, F. Lardeux, and F. Saubion. A dynamic island model for
adaptive operator selection. In GECCO ’12, pages 1253–1260, 2012.

3. B. Derbel and S. Verel. DAMS: distributed adaptive metaheuristic selection. In
GECCO ’11, pages 1955–1962, 2011.

4. A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter control in
evolutionary algorithms. In Parameter Setting in Evolutionary Algorithms, pages
19–46. Springer, 2007.

5. C. M. Fernandes, J. L. Laredo, J. J. Merelo, C. Cotta, R. Nogueras, and A. C.
Rosa. Shuffle and mate: A dynamic model for spatially structured evolutionary
algorithms. In PPSN XIII, pages 50–59. Spriger, 2014.

6. A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Analyzing bandit-based
adaptive operator selection mechanisms. AMAI, 60:25–64, 2010.

7. M. Garćıa-Valdez, L. Trujillo, J. J. Merelo-Guérvos, and F. Fernández-de Vega.
Randomized parameter settings for heterogeneous workers in a pool-based evolu-
tionary algorithm. In PPSN XIII, pages 702–710. Springer, 2014.

8. Y. Gong and A. Fukunaga. Distributed island-model genetic algorithms using
heterogeneous parameter settings. In CEC 2011, pages 820–827, 2011.

9. S. A. Kauffman. The Origins of Order. Oxford University Press, 1993.
10. L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI

Magazine, pages 48–60, 2012.
11. M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The R pack-

age irace package, iterated race for automatic algorithm configuration. Technical
Report TR/IRIDIA/2011-004, IRIDIA, 2011.

12. J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118,
1976.

13. R. Tanabe and A. Fukunaga. Evaluation of a randomized parameter setting strat-
egy for island-model evolutionary algorithms. In CEC’13, pages 1263–1270, 2013.

14. D. Thierens. An adaptive pursuit strategy for allocating operator probabilities. In
GECCO’05, pages 1539–1546, 2005.

15. M. Tomassini. Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time (Natural Computing Series). Springer-Verlag, 2005.

16. S. Tongchim and P. Chongstitvatana. Parallel genetic algorithm with parameter
adaptation. Information Processing Letters, 82(1):47 – 54, 2002.

17. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based
algorithm selection for sat. J. Artif. Int. Res., 32(1):565–606, June 2008.

106

107

Combining Mutation and Recombination to
Improve a Distributed Model of Adaptive

Operator Selection

Jorge A. Soria-Alcaraz 1, Gabriela Ochoa 2,
Adrien Göeffon3, Frédéric Lardeux3, Frédéric Saubion3

1Universidad de Guanajuato - División de Ciencias Económico-Administrativas -
Depto de Estudios Organizacionales, 2University of Stirling, 3University of Angers

Abstract. We present evidence indicating that adding a crossover is-
land greatly improves the performance of a Dynamic Island Model for
Adaptive Operator Selection. Two combinatorial optimisation problems
are considered: the Onemax benchmark, to prove the concept; and a
real-world formulation of the course timetabling problem to test prac-
tical relevance. Crossover is added to the recently proposed dynamic
island adaptive model for operator selection which considered mutation
only. When comparing the models with and without a recombination, we
found that having a crossover island significantly improves the perfor-
mance. Our experiments also provide compelling evidence of the dynamic
role of crossover during search: it is a useful operator across the whole
search process. The idea of combining different type of operators in a
distributed adaptive search model is worth further investigation.

1 Introduction

Search operators are key elements of heuristic search algorithms, determining
the structure of the fitness landscape being searched. A large variety of opera-
tors have been proposed in the literature for combinatorial optimisation prob-
lems. However, given a new problem or instance of a combinatorial problem it
is not clear before hand which operator (or indeed set of operators) will be the
most effective. In response to this, modern heuristic approaches combine several
operators. Some schemes such as variable neighbourhood search, or standard
memetic algorithms combine operators in a pre-determined way. Some other
schemes, such as hyper-heuristics [2, 12], and adaptive operator selection ap-
proaches [10], acknowledge the advantage of combining a pool of operators; but
most importantly, they also realise that the usefulness of specific operators can
vary dynamically across the search process. Therefore, they propose adaptive,
learning-based mechanisms for selecting operators on the fly.

Island models [18] were initially introduced for avoiding premature conver-
gence in evolutionary algorithms (EAs). They use a set of sub-populations in-
stead of a single a panmictic one. Sub-populations evolve independently on sep-
arated islands during some search steps and interact periodically with other

108

islands by means of migrations [14], whose impact has been carefully studied [8,
9]. Two main types of island models can be considered. First, replicating the
same algorithm on each island with the view of improving the management of
the population. This constitutes the most common use of island models and is
closely related to distributed evolutionary algorithms [9]. Second, considering
different algorithms (or algorithms settings) on each island as a dynamic con-
trol method in order to identify the most promising algorithm according to the
current state of the search.

Island models traditionally use fixed migration policies in order to reinforce
the islands characteristics [15, 6, 1]. An alternative dynamic migration policy
was proposed by Lardeux and Goëffon [7], where migration probabilities change
during the evolutionary process according to the impact of previous analogue
migrations. The island model should be able to both identify the current most
appropriate subset of islands for improving individuals, and to quickly react to
changes if other heuristics (operators) turn out to be more beneficial.

It is important to stress that in this article, the island model does not im-
plement a complete evolutionary algorithm in each island as it is usually done.
Instead, each island is associated with a single (different) search operator, and
in every iteration the island’s operator is applied to all individuals in the island.
This constitutes an approach to adaptive operator selection as recently pro-
posed by Candan et al.[3]. The ability of the dynamic island model to efficiently
manage simple operators has already been compared to other adaptive opera-
tor selection approaches in [3] . So far, mutation operators or abstract scenarios
have been considered. The motivation of this paper is to assess the efficiency of
the island model in presence of different kinds of operators, such as crossover
on various problems. The idea is to assign an operator to each island and use
the dynamic regulation of migrations to distribute the individuals on the most
promising islands (i.e., the most efficient operators) at each stage of the search.

The main contribution of this article is the introduction of crossover in con-
junction with mutation operators, while the original adaptive operator selection
model considered only mutation operators [3]. In our proposal, individuals from
different islands can undergo recombination when they “visit” the recombina-
tion island and thus may directly share information. We found that having a
crossover island significantly improves the model’s performance. We demonstrate
this by comparing the models with and without recombination on two selected
benchmarks: the Onemax problem, widely used to prove concepts in adaptive
operator selection studies [5, 4, 3]; and a formulation of the course timetabling
problem considering the set of publicly available real-world instances from the
2007 International Timetabling Competition ITC-2007 [11].

The article is organised as follows. Section 2 introduces the dynamic island
model of adaptive operator selection, and how we incorporated crossover into
it. Section 3 describes the experimental setting, while results are presented in
Section 4. Finally, Section 5 summarises our findings and suggests directions for
future work.

109

2 Crossover as an Island Operator

We start by formally presenting the dynamic island model for adaptive operator
selection and follow by describing how crossover was incorporated.

2.1 Dynamic Island Model

Let us consider an optimisation (minimisation) problem defined as a pair (S, f)
where S is a search space whose elements represent candidate solutions of the
problem, and f : S → R is an objective function. An optimal solution is an
element s∗ ∈ S such that ∀s ∈ S, f(s∗) > f(s).

An Island Model can be formally defined as a tuple (I,H,P, V,M). Where
I = {i1, · · · , in} is the set of Islands, H = {H1, · · · , Hn}, a set of heuristics
(operators in this paper), and P = {p1, · · · , pn} a collection of sub-populations,
one per island. The topology of the model is given by an undirected graph
G(I, V) where V ⊆ I2 is a set of edges between islands (I, the nodes of the
graph.) Finally, the migration policy is given by a square matrix M of size n,
such that M(i, j) ∈ [0, 1] represents the probability for an individual to migrate
from island i to island j. Each island k is equipped with a sub-population pk and
an operator Hk. The matrix M is coherent with the topology, i.e., if (i, j) 6∈ V
then M(i, j) = 0. Algorithm 1 outlines the operation of an Island Model for
minimisation problems.

Algorithm 1 Basic Island Model

Require: an IM (I,A,P, V,M), an Optimisation problem (S, f)
1: while not stop condition do
2: for i← 1 to n do
3: pi ← Hi(pi)
4: for s ∈ pi do
5: for j ← 1 to n do
6: generate a random number rand
7: if rand < M(i, j) and |pi| > 0 then
8: pj ← pj ∪ {s}
9: pi ← pi \ {s}

10: end if
11: end for
12: end for
13: end for
14: b← best(

⋃
i(pi))

15: if f(b) > f(s∗) then
16: s∗ ← b
17: end if
18: end while
19: return s∗

110

In the algorithm, pi denotes the sub-population at island i and Hi(pi) (line
3) the population obtained after applying heuristics Hi on it. The function best
computes the best current individual w.r.t. objective function f . The stopping
condition is, as usual, a limited number of iterations or the fact that an optimal
solution has been found in the global population. The migration matrix M is
used to send individuals to other islands or stay on the same one.

In dynamic island models, an adaptive update of the migration matrix at
iteration t+ 1, denoted Mt+1, is performed as:

Mt+1(i, k) = (1− β)(α.Mt(i, k) + (1− α)Ri,t(k)) + βNt(k)

where Nt is a stochastic noise vector such that ||Nt|| = 1 and Ri,t is a reward
vector that is computed after applying Hi at time t. α allows to control the bal-
ance between previous knowledge accumulated and immediate observed effect.
β controls the amount of noise, which is necessary to explore alternative actions.
These parameters need to be tuned and their impact has been studied in [3].
The reward Ri,t(k) is defined as:

Ri,t(k) =

{
1
|B| if k ∈ B,
0 otherwise,

where B is the set of the operators that have been produce the best improvement
for each island i.e., operators producing the best improvements according tof
for each island at a given time.

2.2 Incorporating Crossover

Mutation heuristics perform a change on a given solution, by swapping, changing,
removing, adding or deleting solution components. In contrast crossover opera-
tors, take two (or more solutions), combine them and return a new solution (or
more than one solution).

Let s ∈ S be a solution. A (unary) mutation operator can be formally defined
as Hm : S → S. Crossover operators can in turn, be defined with the following
signature Hc : S × S → S × S. We propose to incorporate crossover as an
island operator. The key idea is to define the crossover Hc with a similar formal
signature than mutation Hm.

Algorithm 2 Standard Operator Island

Require: a population p
1: OffspringPool = ∅
2: for all s ∈ p do
3: OffspringPool = OffspringPool ∪ {H(s)}
4: end for
5: return OffspringPool

111

Algorithm 2 outlines the behaviour of an operator island in the island model.
The operator H is applied at line 3. The crossover island uses the same overall
Algorithm 2, but to apply recombination (Hc) with the same signature than
mutation, it requires a single solution as parameter. The crossover is performed
using the incoming solution as one parent. The other parent is either a random
solution (only for the first iteration) or the last incoming solution. The best
generated offspring is then returned. This is outlined in Algorithm 3. With this
simple mechanism we can combine mutation and recombination operators in the
island model for adaptive operator selection.

Algorithm 3 Crossover Operator Hc

Require: s incoming solution
1: if Temp is undefined then
2: Temp = randomSolution()
3: end if
4: Offsprings = Crossover(Temp, s)
5: Temp = s
6: return Best(Offsprings)

3 Experimental Setup

Two algorithm variants are considered: DIM-M, a dynamic island model of adap-
tive operator selection with mutation operators only, and DIM-MX, which com-
bines mutation and recombination. They are tested using the benchmark prob-
lems and algorithm setting described below.

Onemax: (or counting ones problem), is a unimodal maximisation problem tra-
ditionally used in theoretical and proof of concept studies in genetic algorithms,
where the string of all ones is the single optimum. Following Candan et.al [3] we
use a Onemax instance of size n = 1000, the algorithm parameters are summa-
rized in Table 1. Four mutation operators and one recombination operator are
considered. Each operator is assigned to an island and it is applied regardless of
whether it improves or not the incoming solution. The operators used are:

– bit-flip mutation: flips each bit with probability 1/n.
– k-bit mutation: (with k= 1, 3, 5), chooses uniformly at random k bits in the

current solution and flips their values.
– 1-point crossover : chooses uniformly at random position in the string, and

interchanges the sub-strings to produce offspring.

Course Timetabling: is a minimisation problem where the objective is to
assign several events to time-slots without violating certain constraints. The
problem can be defined in terms of a set of events (courses or subjects) E =
{e1, e2, . . . , en}, a set of time-periods T = {t1, t2, . . . , ts}, a set of places (class-
rooms) P = {p1, p2, . . . , pm}, and a set of agents (students registered in the

112

courses) A = {a1, a2, . . . , aq}. An assignment is then given by the quadruple
(e ∈ E, t ∈ T, p ∈ P, a ∈ A), and a solution to the problem is a complete set of n
assignments (one for each event) that satisfies the set of hard constraints. Our
formulation uses a generic modelling approach where solutions are encoded as
vectors of integer numbers of length equal to the number of events (courses) [16,
17]. Positions in the vector represent events, and their integer values are indices
in a set of data structures encoding pairs of valid time-slots and classrooms for
each event [16]. A set of four mutation operators are considered, which were
the best performing in [17]. They range from simple randomised exchange or
swap neighbourhoods to greedy and more informed procedures. As a crossover
operator we implemented the simple 1-point crossover. This is possible with the
representation used (a vector if integer numbers) where offspring generated by
1-point crossover are valid solutions.

– Simple Random Perturbation (SRP): uniformly at random chooses a variable
and changes its value for another one inside its feasible domain.

– Swap (SWP): selects two variables uniformly at random and interchanges
their values.

– Statistical Dynamic Perturbation (SDP): chooses a variable following a prob-
ability distribution based on the frequency of variable selection in the last k
iterations. Variables with lower frequency will have a higher probability of
being selected. Once selected, the value is randomly changed.

– Double Dynamic Perturbation (DDP): similar in operation to SDP, but in-
ternally maintains an additional solution, and returns the best of the two
solutions.

– 1-point crossover : chooses uniformly at random position in the vector, and
interchanges the sub-portions to produce offspring.

The experiments considered the 24 real-world instances from the 2007 Inter-
national Timetabling Competition ITC-2007, track 2, which correspond to the
post-enrollment course timetabling benchmark1. These instances range from 400
to 600 events. Table 1 reports the algorithm parameters used. Experiments were
conducted on a CPU with Intel i7, 8GB Ram using the Java language and the
64 bits JVM.

4 Results

4.1 Onemax

Figure 1 illustrates an example run of the two algorithm variants on the Onemax
problem. DIM-M contains 4 islands, one for each mutation operator, while DIM-
MX has 5 islands, corresponding to the 4 mutations and the 1-point crossover.

1 Available at http://www.cs.qub.ac.uk/itc2007/

113

Table 1: Algorithm parameters for the two benchmark problems.
Parameter Onemax Course Timetabling

Chromosome length 1000 400 to 600
Population size 800 1000
Number of islands 4 or 5 (one for each operator)
Initial migration 1/ number-of-islands
(α, β) (0.8,0.1) (0.8,0.1)
No. of runs 10 10 per instance
Stop Criteria Optimum is found 540 sec

The curves show, for each operator (island), the sub-population size over time
measured as iterations, and reported at intervals of length 150 (the X values
are ×10). We consider an iteration as a single complete execution of the DIM
algorithm, which this corresponds to a move or migration of individuals across
islands. The plot also shows (the black solid line) the best individual fitness over
time, with values visible in the right-hand axis. The variant without crossover
(DIM-M, left plot) required over two minutes (128.32 seconds) to reach the global
optimum, which corresponds to nearly 7,000 iterations and 68,251 functions calls.
The plot shows how the most explorative 5-bit operator has the highest attraction
rate at the very early stages of the search. Soon, after 50 iterations or so, this
rate goes down leaving a less perturbative operator (namely, 1-bit) to take the
lead in the search process. The variant with recombination (DIM-MX, right plot)
reached the optimum much faster, in less than 30 seconds, which corresponds
to 1,300 iterations and 17,363 functions calls. The plot illustrates the run up
to 7,000 iterations for comparisons purposes with the DIM-MX variant. In this
case, the crossover operator attraction rate increases steadily up to the point
where the optima solution is found. Another interesting observation from these
experiments is the superiority of the 1-bit mutation over the more standard
bit-flip operator for this problem.

Figure 2 offers a close up of the first 3,000 iterations showing population
size at each step and considering only two operators for each variant: 1-bit and
5-bit for DIM-M and, 1-bit and crossover for DIM-MX. Note that the horizon-
tal axis shows multiples of 10 iterations. As the right plot of Fig. 2 illustrates,
crossover is increasingly useful for DIM-MX search up to the point where the
optimal solution is found, which occurs around iteration 1,300. This confirms
an interesting property of crossover, which was observed by Ochoa et al. before
[13]. Crossover is a versatile operator, its role is dynamic: when there is high
diversity in the population such as at the beginning of the search process, it acts
as an explorative operator. However, when the population diversity is low (i.e.,
the population is largely converged) it acts instead an improvement operator
preserving the useful building blocks. For Onemax, it is clear that, at the be-
ginning of the search when individuals have low quality (i.e., contain few ones)
and are very different, crossover may quickly generate new individuals with more
ones by recombination and thus quickly explore more interesting areas. While

114

legend
1−bit 3−bit 5−bit Fitnessbit−flip Croosover

DIM-M DIM-MX

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

200

100

0 150 300 450 600

0

250

500

750

1000

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

200

100

0 150 300 450 600

0

250

500

750

1000

Fig. 1: Onemax. Attraction rate (sub-population size) of each operator (island)
along with best fitness over time. Values in the X axis multiplied by 10 give it-
erations. DIM-M, using mutation operators only. DIM-MX, combining mutation
with a crossover operator.

when the population has converged to higher quality (i.e., when individuals con-
tains mainly ones), crossover may also be useful by preserving the components
of the highly fit individuals. The probability of selecting crossover eventually
drops after the optimal solution is found (iteration 1,300) and the performance
curve flattens. This is probably due to the computational overhead of crossover
as compared to mutation operators. So, it ceases to be selected when no addi-
tional improvements are found in the search process. But clearly the operator
was increasingly useful from the early stages of the search up to the point when
the optimal solution was found. Therefore, crossover is a useful operator across
all the search process..

This contrasts with the behaviour of 5-bit on the left plot of Fig. 2 (DIM-M),
where 5-bit acts an efficient explorative operator early on (up to iteration 500
or so), but then it stops being useful, as it becomes too disruptive and its rate
drops (which has also been observed in [3]).

4.2 Course Timetabling

As a first experiment, we ran the two algorithm variants for two minutes (120
seconds) on a selected course timetabling instance. Specifically, instance number
1 from the ITC-2007 track 2 set, which consists of 500 students, 400 courses,
35 time-slots and 10 classrooms. Again, DIM-M contains 4 islands, one for each
mutation operator, while DIM-MX has 5 islands, corresponding to the 4 muta-
tions and the 1-point crossover. Figure 3 illustrates the results. The curves show,
for each operator, the sub-population size over time (measured as iterations, at

115

DIM-M DIM-MX

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

variable
1−bit

Fitness

200

100

0 75 150 225 300

0

250

500

750

1000

5-bit

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

variable
1−bit

Fitness

200

100

0 75 150 225 300

0

250

500

750

1000

Croosover

Fig. 2: Onemax. Close up of the attraction rate (sub-population size) of each
operator (island) along with best fitness over time, for the first 3,000 iterations.
Values in the X axis multiplied by 10 give iterations. DIM-M, illustrating 1-bit
and 5-bit . DIM-MX, illustrating 1-bit and crossover

intervals of length 250). The black solid line in the plots shows the best individ-
ual fitness over time, with values indicated in the right-hand axis. In this case,
we are dealing with a minimisation problem. It can be seen that the number of
iterations is 9250 for DIM-M (left plot), while it is of 6800 iterations for DIM-
MX. This is because an DIM-MX iteration uses more resources as it consists of 5
operators. Despite this increased CPU demand, the variant with crossover pro-
duces the best results at the end of the 120 seconds run. Specifically, DIM-MX
finds a solution with fitness 582 (as seen in the right axis with fitness values),
which is a much better value (we’re mimimising soft-constraints violations) than
the 845 solution achieved by DIM-M. The dynamic rates of the operators across
the run is more complex for this problem than for the Onemax (Figs. 1 and 2).
The operators combine efforts and take turns in solving the problem. The curves,
however, indicate that when recombination is not used (DIM-M, left plot), the
swap (SWP) operator dominates the search, specially at the initial and middle
stages, while for the DIM-MX variant (right plot), crossover dominates at several
stages and enhances the search process.

For a more thorough comparison, we used the experimental conditions and
rules followed in the timetabling competition. Specifically, we used the bench-
mark program provided in the competition site to measure the allowed running
time on a given machine. This time is generally between 300 and 600 seconds
(per run, per instance) on a modern PC. Following the competition protocol, 10
replicas per instance were considered, and the remaining algorithm parameters
are reported in Table 1.

Table 2 shows results over some representative instances. The variant with
recombination DIM-MX, consistently produced the best results across all the in-
stances. Moreover, results with DIM-MX show a much lower standard deviation.
We suggest that this occurs because crossover guides the search by combining

116

legend
SRP FitnessSDP DDP SWP Croosover

DIM-M DIM-MX

Iterations

P
op

ul
at

io
n

S
iz

e

F
itness

875

1250

1620

2000

500

200

100

0 150 300 600 750 900 Iterations

P
op
ul
at
io
n4
S
iz
e

F
itness

200

100

0 75

500

875

1250

1620

2000

150 225 300 450 525 675600

Fig. 3: Course Timetabling, instance ITC-2007-1. Attraction (sub-population
size) of each operator (island) along with best fitness over time. Values in the
X axis multiplied by 10 give iterations. DIM-M, using mutation operators only.
DIM-MX, combining mutation with a crossover operator.

information from the whole population, and contributes to escape local optima.
For the mutation-only variant, migration among islands is the only mechanism
for information exchange. It is more likely in this case for an island to be trapped
in a local optima.

Table 2: Course Timetabling. Representative ITC-2007 instances. Results are
shown in the form of: X̄σ

Instance No. 1 4 10 15 18 20 23

DIM-M 345.2245.23 690.5662.49 2778.2210.4 30.412.1 40.1532.84 186.1438.12 1677.14420.2

DIM-MX 131.1640.10 586.3137.78 2358.2165.3 7.75.3 22.1622.30 150.1015.2 1378.4290.3

A statistical analysis of the results across all test instances was also con-
ducted. Normality and Homocesticity of the data was checked using Shapiro-wilk
test. The results of a two-way ANOVA test combining the 24 test instances and
2 algorithm variants is reported in Table 3. The test indicates whether (or not)
the means of several groups are equal, which in this context refers to whether
the competing algorithms have the same performance across the tests instances.
The obtained results support the existence of significant performance differences
between the DIM variants.

The numbers in bold font under the (Pr(> F)) label in Table 3 show the
corrected p-value. This value represents the probability of obtaining a test statis-

117

tic result at least as extreme or as close to the one that was actually observed,
assuming that the null hypothesis is true (H0 : algorithms have the same per-
formance). Further analysis is provided to identify by other statistical test if the
pair of algorithms have significantly different performance. This is achieved with
Tukey HSD test with confidence level of 95% (reported at the bottom of Table
3), again the corrected p-value (0.0) give us a very strong presumption against
null hypothesis.

Table 3: Course Timetabling. Two-way ANOVA F test, pairwise t test and Tukey
HSD test.

ANOVA Df Sum Sq Mean Sq F value Pr(>F)

Algorithm 1 736576 736576 54.771 6.59e-13
Instance 23 1699991740 7390945 549.58 <2.2e-16
Residuals 455 6118956 13448

TukeyHSD diff lwr upr p adj

DIM − 5 vs DIM − 4 -78.34 -99.15 -57.54 0.00

5 Conclusions

We propose to integrate crossover operators in a dynamic island-based model
for adaptive operator selection. This is implemented by using crossover with a
similar formal signature to mutation, and keeping a temporary solution in the
crossover island to serve as a parent. Importantly, our model is not a standard
island model in that: (i) a single operator instead of complete evolutionary al-
gorithm is kept in each island, and (ii) migration policies are dynamic rather
than static. Our results on two benchmark problems (Onemax, and real-world
instances of the course timetable problem), allow us to both prove the concept
and test its practical relevance. Having a crossover island was found to signifi-
cantly increase the performance, despite the added computational overhead.

Our results on the Onemax problem provide a visually appealing confirma-
tion of an argument proposed by Ochoa et al. [13] on the advantages of recom-
bination. Recombination performs a dual-role in genetic search according to the
level of genetic diversity in the population. At early stages, when the population
is diverse, recombination acts as a diverging operator (similar to a strong mu-
tation), increasing the search power and speeding up the process. Towards the
final stages of the search, when the population is genetically converged, recom-
bination can instead focus the population around the fitness optimum (similar
to a light mutation). Therefore, recombination has a dynamic role and is helpful
across the complete search process.

Future work will explore the behaviour of more complex crossover operators
and different migration policies over additional combinatorial problems.

118

Acknowledgments

J. A. Soria-Alcaraz would like to thank the Consejo Nacional de Ciencia y
tecnologia (CONACyT, México). G. Ochoa would like to thank the University
of Angers for hosting and funding a research visit in 2014 that started this
collaboration.

References

1. Araujo, L., Guervós, J.J.M., Mora, A., Cotta, C.: Genotypic differences and mi-
gration policies in an island model. In: GECCO. pp. 1331–1338 (2009)

2. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. Journal of the Operational
Research Society (JORS) 64(12), 1695–1724 (2013)

3. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: A dynamic island model for
adaptive operator selection. In: Genetic and Evolutionary Computation Conference
(GECCO’12). pp. 1253–1260 (2012)

4. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of the 10th annual conference
on Genetic and evolutionary computation. pp. 913–920. ACM (2008)

5. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Parallel Problem Solving from Nature–PPSN X, pp. 175–
184. Springer (2008)

6. Gustafson, S., Burke, E.K.: The speciating island model: An alternative parallel
evolutionary algorithm. J. Parallel Distrib. Comput. 66(8), 1025–1036 (2006)

7. Lardeux, F., Goëffon, A.: A dynamic island-based genetic algorithms framework.
In: Simulated Evolution and Learning, pp. 156–165. Springer (2010)

8. Lässig, J., Sudholt, D.: Design and analysis of migration in parallel evolutionary
algorithms. Soft Comput. 17(7), 1121–1144 (2013)

9. Luque, G., Alba, E.: Selection pressure and takeover time of distributed evolu-
tionary algorithms. In: Pelikan, M., Branke, J. (eds.) Genetic and Evolutionary
Computation Conference, GECCO 2010. pp. 1083–1088. ACM (2010)

10. Maturana, J., Saubion, F.: On the design of adaptive control strategies for evo-
lutionary algorithms. In: Proc. Int. Conf. on Artificial Evolution. LNCS 4926,
Springer (2007)

11. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J.,
Gaspero, L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated
timetabling: The second international timetabling competition. INFORMS Journal
on Computing 22(1), 120–130 (2010)

12. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau,
M., Kendall, G., Parkes, A.J., Petrovic, S., Burke, E.K.: Hyflex: a benchmark
framework for cross-domain heuristic search. In: Proceedings of the 12th Euro-
pean conference on Evolutionary Computation in Combinatorial Optimization,
EvoCOP’12. Lecture Notes in Computer Science, vol. 7245, pp. 136–147. Springer-
Verlag, Berlin, Heidelberg (2012)

13. Ochoa, G., Harvey, I., Buxton, H.: On recombination and optimal mutation
rates. In: in Proceedings of Genetic and Evolutionary Computation Conference
(GECCO). pp. 488–495. Morgan Kaufmann (1999)

119

14. Rucinski, M., Izzo, D., Biscani, F.: On the impact of the migration topology on
the island model. CoRR abs/1004.4541 (2010)

15. Skolicki, Z., Jong, K.D.: The influence of migration sizes and intervals on island
models. In: GECCO. pp. 1295–1302 (2005)

16. Soria-Alcaraz, J., Martin, C., Héctor, P., Hugo, T.M., Laura, C.R.: Methodology
of design: A novel generic approach applied to the course timetabling problem.
In: Soft Computing Applications in Optimization, Control, and Recognition, pp.
287–319. Springer Berlin Heidelberg (2013)

17. Soria-Alcaraz, J.A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.K.: Effec-
tive learning hyper-heuristics for the course timetabling problem. European Journal
of Operational Research 238(1), 77 – 86 (2014)

18. Whitley, D., Rana, S., Heckendorn, R.: The island model genetic algorithm: On
separability, population size and convergence. Journal of Computing and Informa-
tion Technology 7, 33–47 (1998)

120

121

Parameter Setting for Multicore CMA-ES
with Large Populations

Nacim Belkhir1,2, Johann Dréo1,
Pierre Savéant1, and Marc Schoenauer2

1Thales Research & Technology, Palaiseau, France
2TAO, Inria Saclay Île-de-France, Orsay, France

{nacim.belkhir,johann.dreo,pierre.saveant}@thalesgroup.com

marc.schoenauer@inria.fr

Abstract. The goal of this paper is to investigate on the overall per-
formance of CMA-ES, when dealing with a large number of cores —
considering the direct mapping between cores and individuals — and to
empirically find the best parameter strategies for a parallel machine. By
considering the problem of parameter setting, we empirically determine
a new strategy for CMA-ES, and we investigate whether Self-CMA-ES (a
self-adaptive variant of CMA-ES) could be a viable alternative to CMA-
ES when using parallel computers with a coarse-grained distribution of
the fitness evaluations. According to a large population size, the resulting
new strategy for Self-CMA-ES and CMA-ES, is experimentally validated
on BBOB benchmark where it is shown to outperform a CMA-ES with
default parameter strategy.

Keywords: Empirical Study, Numerical optimization, Metaheuristics,
Algorithms Comparison

1 Introduction

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6] is one of the
most efficient algorithms for real valued single-objective optimization problems.
Thanks to its invariance properties [10], some default parameter values could
be tuned using a rather small set of test functions [6], and nevertheless provide
robust performances on a large variety of problems, from analytical benchmark
functions [8] to many real-world applications (see, among many others, [7]).

With the end of Moore’s years, increasing the speed of software nowadays
requires an efficient parallelisation. Evolutionary Algorithms like CMA-ES can
trivially be parallelized without modifying the underlying dynamics of the algo-
rithm by distributing the computation of the fitnesses of the whole population
on different slave nodes, the master node maintaining the population as a whole,
and ensuring the reproduction phase. For optimal efficiency, the population size
should be some multiple of the number of available computing units.

It turns out that the default value for the population size λ for CMA-ES is
rather small, empirically set to 4+3 ln(n) [6], where n is the problem dimension.

122

And increasing λ without any further parameter tuning has been experimen-
tally demonstrated to perform poorly for CMA-ES and other types of Evolution
Strategies: [3] proposes a new update strategy for the global step-size; [21, 22]
suggests to modify the ratio between number of parents and number of offspring.
This paper investigates another approach to improve the performance of CMA-
ES in a distributed setting: assuming some given number of cores, the use of
computing resources is optimized by fixing the population size λ to this number
of cores1. The goal is then to optimize the other parameters of CMA-ES to im-
prove its performances.

Today, parameter tuning is acknowledged as a mandatory step toward ef-
ficient optimization algorithms at large [11], be they exact combinatorial opti-
mization algorithms [12], or (possibly stochastic) heuristics and metaheuristics,
among which Evolutionary Algorithms [5] (more in Section 2.1). Off-line tuning
considers parameter tuning as a (meta-)optimization problem, and generic op-
timization algorithms can hence be applied [4, 12, 14, 18]. These methods have
been in particular used to further improve CMA-ES performances [13, 15, 19],
therefore suggesting that the same approach could be used to tackle the problem
of a large λ – though leaving open the issue of the generality of such tuning [20].

On the other hand, optimization is a dynamic process, and the best parame-
ter values at a given time of the search might no longer be efficient later. On-line
parameter tuning therefore seems a very promising approach. However, there
are very few (if any) examples of success of on-line tuning except in the his-
tory of Evolution Strategies, where CMA-ES, as its name suggests, is the most
sophisticated of a long line of algorithms that do efficiently implement on-line
adaptation of their main parameters. Yet, the adaptation mechanism of CMA-
ES itself has some parameters, and a first approach to their on-line tuning has
been recently proposed, leading to the so-called Self-CMA-ES [17], validated on
a few test functions, and in the framework of a large population size.

The goal of this work is to investigate CMA-ES parameter tuning in a dis-
tributed context (fixed large λ), and in particular to compare experimentally
the off-line and on-line approaches for different values of λ on the BBOB bench-
mark suite. The paper is organized as follows. Section 2 rapidly introduces the
problem of parameter setting, and details the hyper-parameters of CMA-ES and
how Self-CMA-ES adapts them. Section 3 introduces the experimental protocol
that is used in Section 4.4 to validate some choices of Self-CMA-ES and compare
the different approaches. Finally, the results are discussed and further research
directions are proposed in Section 5.

2 State of the Art

2.1 Parameter Setting

It is today widely acknowledged that the performances of optimization algo-
rithms are highly correlated with the values given to their parameters [11]. Fol-

1 This also covers the case where λ is set to some multiple of the number of cores.

2

123

lowing the classification discussed in [5], one should distinguish between off-line
and on-line parameter setting methods. In the off-line case (aka parameter tun-
ing), the important secondary issue is that of the generality of the setting, and
in the on-line case (aka parameter control), the distinction between dynamic,
adaptive or self-adaptive approaches.

Off-line approaches view the problem of parameter tuning as an optimization
problem in the space of parameters: the fitness of a parameter setting is the
performance of the algorithm at hand, and any optimization method on the
parameter space can be used given a practical way to compute the performance
of the algorithm. Assuming that the user knows the quantity she/he is interested
in (e.g., minimizing the runtime to reach a given solution quality, or optimizing
the solution quality given a fixed computational budget), here comes into play
the generality of the sought setting [20]. If the target of the experiments is a single
(or a small number of) problem instance(s), the performance of the algorithm
is computed by running it on each target instance (eventually aggregating over
the different instances in the target set). But very often, the goal of parameter
tuning is to find a robust setting that will give very good performances for some
class of problem instances that cannot be enumerated. The performance of the
algorithm is then approximated by running it on some carefully chosen test set
of instances of the target class, hoping the result will be general enough to cover
the whole class. Using large test sets improves the robustness of the setting, but
increases the computational cost of the parameter setting process, as one single
evaluation of the performance of a given parameter setting involves running the
algorithm at hand once for all instances of the test set.

Several generic optimization methods have been adapted to handle param-
eter tuning and cope with the above-mentioned generalization issue, based on
racing [16], on metaheuristics [18], on statistical modeling of the algorithm per-
formance with Gaussian Processes [2], or on local search [14]. The most recent
one, that has been used in this work, is SMAC (Sequential Model-based Al-
gorithm Configuration)2 [12], that uses random forest regression to model the
algorithm performance as well as the uncertainty of its prediction. SMAC uses
the Expected Improvement measure to choose, given a model, which parameter
set to try next.

On-line parameter control, on the other hand, is concerned with tuning the
parameter values during the run of the algorithm, thus avoiding any generaliza-
tion issue and, more importantly, requiring little, if any, computational overhead.
Three approaches should be distinguished [5], depending on how the parameters
are modified during the run: in the deterministic approach, they are modified us-
ing a fixed schedule (that has to be designed off-line!); in the adaptive approach,
the parameters are modified according to some feedback from the current state
of the search; and in the self-adaptive approach, the parameters are subject to
evolution: each individual (potential solution of the original optimization prob-
lem) carries its own parameters, and though selection applies only to the fitness,

2 SMAC is freely available at http://www.cs.ubc.ca/labs/beta/Projects/SMAC/.

3

124

it is hoped that successive selections will only select individuals that carry good
parameters.

Unfortunately, whilst adaptive or self-adaptive on-line control is potentially
more efficient than off-line tuning, offering a way to adapt the parameters to
the instance at hand, and to the current state of the search, there are very few
examples of successful on-line control, and most of them are highly problem-
dependent. As a matter of fact, the only success story of on-line parameter tuning
is that of Evolution Strategies. A detailed presentation of the history of Evolution
Strategies in this perspective is given in Section 3 of [5] and will not be repeated
here due to space restrictions. We will directly switch to introducing CMA-ES,
that can be viewed as the last link of the long chain of Evolution Strategies
variants, that went from adaptive to self-adaptive and back to adaptive tuning
of its Gaussian mutation.

2.2 CMA-ES

Let f be the real-valued objective function, defined on Rn. CMA-ES [6] evolves
a Gaussian distribution N

(
mt, (σt)2C t

)
on Rn with mean mt (the current esti-

mate of the optimal solution) and covariance matrix (σt)2C t, where the step-size
σt is isolated from the covariance direction C so they can be adapted separately.
The original (µ/µw, λ)-CMA-ES (Algorithm 1) works as follows. At iteration
t, the current distribution N

(
mt, (σt)2C t

)
is sampled, generating λ candidate

solutions (line 5), whose fitness is computed (line 6). The new mean mt+1 is
computed line 7 as the weighted sum of the best µ individuals according to f .
The adaptation of the step-size σt is controlled by the evolution path pt+1

σ , that

stores, with relaxation factor cσ, the successive mutation steps mt+1−mt
σt (line 8).

The step-size is increased (resp. decreased) in the case of the length of the evo-
lution path pt+1

σ is longer (resp. smaller) than the expected length it would have
under random selection (line 9). The covariance matrix is updated using both a
rank-one update term, computing the evolution path pt+1

c of successful moves of

the mean mt+1−mt
σt of the distribution in the original coordinate system (line 11)

and the rank-µ update, a weighted sum of the covariances of successful steps of
the best µ individuals (using the weights of the update of the mean – line 12).
Two weights are used for this last update (line 13), c1 for the rank-one term,
and cµ for the rank-µ term, hence c1 and cµ must be positive with c1 + cµ ≤ 1.

The default values of the parameters of the algorithm [6] are set in line 1,
but are hidden to the user in the standard CMA-ES distributions, except for the
population size λ and the number of selected parents µ. Though the already-
mentioned invariance properties of CMA-ES [10] ensure some robutsness of the
default setting, several improvements could be reached using off-line tuning of
some of these parameters, namely λ (or more precisely the coefficient of λ as
a function of n) and the ratio µ

λ , as well as the parameters cσ and dσ for the
adaptation of σ [13, 19]. Note that some additional parameters related to the
stopping criterion are not presented in Algorithm 1, and have a large impact on
the restart versions of CMA-ES [1]. These were also tuned using IRACE in [15].

4

125

Algorithm 1 The (µ/µw, λ)-CMA-ES (from [6])

1: given n ∈ N+, λ = 4 + b3 lnnc, µ = bλ/2c, wi =
ln(µ+ 1

2
)−ln i

∑µ
j=1(ln(µ+

1
2
)−ln j)

for i = 1 . . . µ,

µw = 1∑µ
i=1 w

2
i

, cσ = µw+2
n+µw+3

, dσ = 1 + cσ + 2 max(0,
√

µw−1
n+1

− 1), cc = 4
n+4

,

c1 = 2
(n+1.3)2+µw

, cµ = 2 (µw−2+1/µw)

(n+2)2+µw

2: initialize mt=0 ∈ Rn, σt=0 > 0,pt=0
σ = 0,pt=0

c = 0,C t=0 = I, t← 0
3: repeat
4: for k = 1, . . . , λ do
5: xk = mt + σtN

(
0,C t

)

6: fk = f(xk)
7: mt+1 =

∑µ
i=1 wixi:λ

8: pt+1
σ = (1− cσ)ptσ +

√
cσ(2− cσ)

√
µw(C t)−

1
2 mt+1−mt

σt

9: σt+1 = σtexp(cσ
dσ

(
‖pt+1
σ ‖

E‖N(0,I)‖ − 1))
10: hσ = 11‖pt+1

σ ‖<
√

1−(1−cσ)2(t+1)(1.4+ 2
n+1

) E‖N(0,I)‖

11: pt+1
c = (1− cc)ptc + hσ

√
cc(2− cc)√µw mt+1−mt

σt

12: Cµ =
∑µ
i=1 wi

xi:λ−mt

σt
× (xi:λ−mt)T

σt

13: C t+1 = (1− c1 − cµ)C t + c1 pt+1
c pt+1

c

T

︸ ︷︷ ︸
rank-one update

+ cµCµ︸︷︷︸
rank−µ update

14: t = t+ 1
15: until stopping criterion is met

However, to the best of our knowledge, the parameter setting for the adaptation
of the covariance matrix cc (line 11, c1 and cµ (line 13) has only been addressed
on-line in [17], and will now be detailed.

2.3 Self-CMA-ES

In Self-CMA-ES [17], the on-line tuning of cc , c1 , cµ relies on the hypothesis that
the best parameter configuration at time t is the one that would have maximized
at time t − 1 the likelihood of generating the best individuals selected at time
t. At every iteration t, an auxiliary optimization algorithm (another CMA-ES,
denoted CMA-ESaux) is hence used to compute this optimal configuration. After
computing the λ offspring at time t (lines 4-5 of Algorithm 1), the state of
the algorithm at time t − 1 is restored, and the optimization of parameters
cc , c1 , cµ proceeds as follows: for each triplet value (cc , c1 , cµ), the virtual
distribution parameters σ and C are computed (lines 8-13) from state t − 1,
and the performance of (cc , c1 , cµ) is the likelihood of generating the best µ of
the actual λ offspring at time t from this virtual distribution. The triplet (cc ,
c1 , cµ) that maximizes this likelihood is returned and is then used, at time t,
to complete the actual update of the actual mutation parameters of CMA-ES
(lines 8-13).

A first issue is that computing the log-likelihood of generating µ given points
of Rn from a given Gaussian is costly and numerically unstable. It was hence

5

126

replaced by a proxy, that works as follows. λ points are sampled from the virtual
Gaussian, their virtual mean is computed (as in line 7), and the Mahalanobis
distance between the actual µ best offspring at time t and this mean is com-
puted. The sum of ranks of these distances used as a proxy for the likelihood.
The detailed formal description of this proxy for the likelihood is given in [17],
together with the global Self-CMA-ES algorithm.

A second issue is the possible overfitting of the parameters (cc , c1 , cµ) due
to a single and limited sampling of the actual offspring at time t. And a third
issue is the computational cost of running a full CMA-ESaux inside every itera-
tion of the master CMA-ES: even though no additional fitness computation of
the main CMA-ES is required, and even though the dimension of the auxiliary
optimization problem is only 3, sampling the virtual Gaussian distribution to
evaluate the proxy likelihood of many triples (and here the dimension is n) has a
non-negligible cost. However, both issues can be resolved simultaneously. First,
the CMA-ESaux is not restarted from scratch at every iteration t of the main
CMA-ES, but restarts from the state of the CMA-ESaux at the end of itera-
tion t− 1; Second, only a small number of iterations of CMA-ESaux is actually
run, avoiding possible overfitting. Section 4.1 will describe some experimental
validation of this procedure.

3 Experimental Setting

The remainder of the paper is devoted to presenting experimental comparison
with the goal of validating some choices for Self-CMA-ES, and assessing when
and how Self-CMA-ES is a better choice than CMA-ES with its default values.

BBOB testbench: All experiments use test functions from the Black Box Op-
timization Benchmark (BBOB)3 [9]. BBOB testbench contains 24 functions,
with known difficulty (e.g. non-separability, high conditioning, different levels of
multi-modality, with or without global structure, etc) and for different dimen-
sions (2, 3, 5, 10, 20, 40). BBOB also proposes an API for most programming
languages. To avoid any bias, for each function, 15 trials are run, where for each
trial, the optimum is moved and for the non-separable functions, the coordinate
system is rotated. Foreach trial, a maximum number of function evaluations of
105 ∗ n is given before the algorithm is killed. Only the noiseless versions of the
functions were used here.

Performance Measure BBOB uses as performance measure the Expected Run
Time, that counts the number of function evaluations used to reach a given tar-
get objective value. taking into account the runs that failed to reach that target
value. This computational effort is normalized by dividing it by the dimension,
when the results on different dimensions need to be aggregated. In this work,
we only consider one target value 10−8, and the number of function evaluations
#FEs as a measure of comparison. However, because we are interested in the dis-
tributed performance, in a context where only the time-to-solution matters, we

3 http://coco.gforge.inria.fr

6

127

propose a new performance measure, the Virtual Wall Clock Time (VWCT),
focusing on the core usage, and formally defined as:

VWCT =
#FEs

λ
=

#FEs

#cores
(1)

The communication time is here neglected: in real situations on HPC clusters,
it will be several orders of magnitude smaller than the computation time of the
objective function (even if this is not true for BBOB functions).

Implementation: For all experiments, we used the Octave/MATLAB source
code provided by authors of [17]4, that was modified in order to expose the
parameters for automated parameter tuning, and/or to apply new parameter
strategies to some parameters.

4 Experimental Results

Four series of experiments are conducted. A first goal is to validate some choices
made in [17] for Self-CMA-ES; A second goal is to compare Self-CMA-ES with
some off-line tuning of (cc , c1 , cµ); A third goal is to identify the best strategy
for the choice of µ; and the final goal is to assess on the whole BBOB benchmark
suite, the performances of Self-CMA-ES with respect to CMA-ES (using the best
setting that could be deduced from the previous experiments).

4.1 Validation of Self-CMA-ES

A first sanity check of Self-CMA-ES is performed by tuning the initial values of
cc , c1 , cµ with SMAC. The good news is that the performance of Self-CMA-ES
is not sensitive to these initial values, as the adaptive mechanism takes over,
whatever its initialization.

A second experiment checks the strategy for CMA-ESaux (see Section 2.3),
running it for different number of iterations, or to full completion. The clear
conclusion is that indeed, as argued in [17], the best results are obtained when
running a single iteration of CMA-ESaux at each iteration of the main CMA-ES.
Because of the space constraints, none of these validation experiments is detailed
here.

4.2 On-line vs off-line tuning of cc , c1 , cµ

In order to check the efficiency of the on-line tuning of cc , c1 , cµ done by Self-
CMA-ES, it should be compared to the off-line tuning of the same parameters
(e.g., using SMAC, see Section 2.1) on the plain CMA-ES. However, because it
was demonstrated in [3,21] that the performance of CMA-ES (or other Evolution
Strategies) with a large λ was highly dependent on µ and the adaptation of σ, and
also because SMAC experiments are very costly, it was decided to run one single

4 https://sites.google.com/site/selfcmappsn/

7

128

SMAC campaign, tuning µ and σ0, the initial value for σ, for both algorithms
(using the adaptation scheme advocated in [3, 21] is left for further work), and
cc , c1 , cµ for CMA-ES. Table 1 describes the experimental conditions. Note
additionally that c1 and cmu must satisfy an additional constraint, that was
handled by returning a very high fitness without running the algorithm when
violated.

Test Functions F1-Sphere, F8-Rosenbrock,
F13-Sharp Ridge, F16-Rastrigin

Dimensions 10, 20

λ λdef , 50, 100, 200, 500, 1000, 1500, 2000

SMAC target for Self-CMA-ES µ ∈ [1, λ], σ0 ∈ [0, 2]

SMAC target for CMA-ES µ ∈ [1, λ], σ0 ∈ [0, 2], (cc , c1 , cµ) ∈ [0, 1]3

Table 1: Experimental setting for SMAC on CMA-ES and Self-CMA-ES.

Typical results are given in Figure 1. The best values for µ (Figure 1a) are
in agreement with [21], i.e., are lower than the default λ

2 . Some regularity with
respect to λ could however be identified, and will be investigated in Section 4.3.

Figure 1b is typical of the behavior of the best values of σ0. Apart the fact
that they usually are lower than the value used in [17] (2.0), it was not possible
to fit any relation with the dimention of the problem. However, the influence
of this parameter seemed limited accross the experiments. Hence, all further
experiments will use σ = 1.3, a rough average of all best values returned by
SMAC.

No trend could be observed either for cc , c1 , cµ , except a rather large vari-
ance of the best values returned by SMAC. Thus the default parameter setting [6]
will be used in the remaining of the experiments for CMA-ES.

Finally, Figure 1c plots the best overall values of both algorithms using the
best parameterization returned by SMAC for each of them. The good news is
that for all λ, Self-CMA-ES can be tuned to perform at least as good as the best
tuning of CMA-ES, though the large variances suggest that more experiments
should be run to better assess this conclusion.

4.3 Choice of µ

The goal of the next series of experiments is to find a generic parametrization
for Self-CMA-ES, i.e. a parametrization that is good on all instances without
using SMAC for each new instance.The possible values for µ are hence restricted
to the discrete list of values given on Table 2, depending on λ. As said, σ0 is set
to 1.3 and all other parameters are set to the default value. As for CMA-ES, the
values for cc , c1 , cµ are set to their default values as well – while they are of
course adapted on-line by Self-CMA-ES.

Figure 2 displays the result for function F6-Attractive Sector in 10D for all
(λ, µ) pairs. As for all functions of Table 2, the best values are obtained for

8

129

10 50 100 200 500 1000 1500

λ

20

40

60

80

100

120

140

V
a
lu

e
s

o
f
µ

B

A

Best Values of µ in 10D

(a) Best Parameter Values of µ

10 50 100 200 500 1000 1500

λ

0.0

0.5

1.0

1.5

2.0

V
a
lu

e
s

o
f
σ

Best Values of σ in 10D

Algorithm

B

A

(b) Best Parameter Values of σ

A B

Algorithm

4000

4500

5000

5500

6000

]F
E
s

]c
or
e

λ=10

A B

Algorithm

210

215

220

225

230

235

240

245

250
λ=50

A B

Algorithm

140

145

150

155

160

165

170
λ=100

A B

Algorithm

100

105

110

115

120

125

130
λ=200

A B

Algorithm

80

82

84

86

88

90

92
λ=500

A B

Algorithm

69

70

71

72

73

74
λ=1000

A B

Algorithm

64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

68.0
λ=1500

VWCT in 10D

(c) Best Performances

Fig. 1: Results for SMAC (see Table 1): Best values for µ (a) and σ0 (b), and best
performances (c) of CMA-ES (A) and Self-CMA-ES (B) on 10D-Rosenbrock.

µ ∈ [λ4 , ln(λ)], while both algorithms achieve their worst performances whith the

default strategy µ = λ
2 . The value µ = λ

8 is hence retained for the final validation
next Section, as providing quasi-optimal results for all functions.

Yet another validation of the on-line strategy for setting cc , c1 , cµ is pre-
sented on Figure 3, that compares, for λ = 200, and on the F1-Sphere function
on 10 and 20 dimensions, Self-CMA-ES with a CMA-ES for which cc , c1 , cµ
have been tuned using SMAC for each value of µ independently, denoted A∗

on the Figure. The results of the tuned CMA-ES are better than those of Self-
CMA-ES, though not significantly for the chosen value µ = λ

8 . Furthermore,
remember that the tuning with SMAC requires to run the algorithm several
hundreds times. Furthermore, applying the parameters returned by SMAC for
the 20D case to the 10D case displays results that are similar to those of Self-
CMA-ES (not shown here).

Another interesting conclusion that can be drawn from Figure 2 is that the
VWCT for λ = 500 and λ = 1000 have very similar values: adding more cores
does not help, and other strategies are needed to take full benefit of CMA-ES
on large computing clusters.

9

130

A B

400

500

600

700

800

900

1000
]F
E
s

λ

λ
2

A B

λ
4

A B

λ
8

A B

λ
16

A B

2ln(λ)

A B

ln(λ)

λ=10

A B
150

200

250

300

350

400

]F
E
s

λ

λ
2

A B

λ
4

A B

λ
8

A B

λ
16

A B

2ln(λ)

A B

ln(λ)

λ=50

A B
100

150

200

250

300

350

]F
E
s

λ

λ
2

A B

λ
4

A B

λ
8

A B

λ
16

A B

2ln(λ)

A B

ln(λ)

λ=100

A B

100

150

200

250

]F
E
s

λ

λ
2

A B

λ
4

A B

λ
8

A B

λ
16

A B

2ln(λ)

A B

ln(λ)

λ=200

A B

50

100

150

200

250

]F
E
s

λ

λ
2

A B

λ
4

A B

λ
8

A B

λ
16

A B

2ln(λ)

A B

ln(λ)

λ=500

A B

50

100

150

200

250

300

]F
E
s

λ

λ
2

A B

λ
4

A B

λ
8

A B

λ
16

A B

2ln(λ)

A B

ln(λ)

λ=1000

Fig. 2: Performances of CMA-ES (A, black) and Self-CMA-ES (B, grey) on 10D-
Attractive Sector (λdef = 10), for all pairs (λ, µ) of Table 2. Empty columns
mean poor results (scaled for readability).

Values

λ (λdef , 50, 100, 150, 200, 500, 1000)

µ λ
2

, λ
8

, λ
16

, 2 ∗ ln(λ), ln(λ)

Functions F1-Sphere, F6-Attractive Sector, F8-Rosenbrock,
F11-Discuss, F12-Bent Cigar

Dimensions 2, 10, 20

Table 2: Setting for the ”µ” experiments. σ0 is set to 1.3.

4.4 Overall BBOB Comparisons

The final experiment is to perform complete BBOB comparisons between the
retained generic parametrization for both Self-CMA-ES and CMA-ES, i.e., µ =
λ
8 and σ0 = 1.3 (the values of cc , c1 , cµ are set to their default values for CMA-

ES). The curve for the default strategy for CMA-ES (µ = λ
8) was also added to

the comparison. The case λ = 200 was chosen as representative.
Figure 4 displays the aggregated results for all functions, for dimensions 5,

10, 20 and 40. Except for dimension 5, Self-CMA-ES performs better than both
CMA-ES, and the advantage increases with the dimension. Looking now at more
detailed results, on Figure 5, it can be seen that the worst results for Self-CMA-

10

131

A B A
algorithm

40

45

50

55

60

65

70

75

80

]F
E
s

λ
λ
2

A B A
algorithm

λ
4

A B A
algorithm

λ
8

A B A
algorithm

λ
16

A B A
algorithm

2ln(λ)

A B A
algorithm

ln(λ)

F1 Sphere 10D, λ=200

(a)

A B A
algorithm

60
70
80
90

100
110
120
130
140
150

]F
E
s

λ

λ
2

A B A
algorithm

λ
4

A B A
algorithm

λ
8

A B A
algorithm

λ
16

A B A
algorithm

2ln(λ)

A B A
algorithm

ln(λ)

F1 Sphere 20D, λ=200

(b)

Fig. 3: Comparison of CMA-ES (A, black), Self-CMA-ES (B, grey), and the
tuned CMA-ES (A?, white) on the Sphere for λ = 200 and as in µ of Table 2.

ES are obtained for the separable functions in dimension 40 (Figure 5a), where
it sometimes fails to reach the target value. Further investigations are needed
to understand why this happens. Also note that the results for low or moderate
conditioning functions (not shown here) show slightly worse results (though not
as bad as for the separable functions) for Self-CMA-ES.

5 Discussion and Conclusion

This paper has experimentally studied parametrization strategies of CMA-ES
that is run in a distributed environment when the primary goal is to minimize the
wall-clock time-to-solution by using all available computing units (e.g., cores).
This situation was simulated by considering large values of the population size
λ as constraints, and tuning the other parameters accordingly. In particular, the
Self-CMA-ES approach [17] has been demonstrated to be, in most cases, a viable
alternative to the default CMA-ES for that goal.

The experiments presented in this paper have first validated most of the
choices made in the original Self-CMA-ES approach [17] for the online control of
the usually hidden parameters cc , c1 , cµ that govern the update of the covari-
ance matrix in CMA-ES. For values of λ up to 2000, we have observed that the
best strategy for the choice of the number of parents µ is µ = λ

8 . This strategy

outperforms the default strategy µ = λ
2 , for both CMA-ES and Self-CMA-ES.

Also, this new strategy slightly outperforms the strategy µ = λ
4 defined in [21],

although [21] considers larger values of λ.
Regarding the initial value σ0 for the step-size σ, the best value for both

CMA-ES and Self-CMA-ES was found to be smaller than that used in [17]
(σ=2), while nevertheless higher than the default value used [6] (σ = 0.3). The
latter is explained by the increase of λ, resulting in a larger coverage of the
search space by the initial sampling. Additionally, the new value of σ asserts the
assumption of adapting the step-size when dealing with a larger λ, as proposed
in [21].

The resulting new strategy for Self-CMA-ES and CMA-ES uncovers good
performances, significantly outperforming the default strategy. Moreover, even

11

132

0 1 2 3
log10 of (#FEs / λ)

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Self-CMAES •

CMA-ES

CMA-ES •f1-24,5-D

(a) 5D

0 1 2 3
log10 of (#FEs / λ)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

CMA-ES •

CMA-ES

Self-CMAES •f1-24,10-D

(b) 10D

0 1 2 3
log10 of (#FEs / λ)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

CMA-ES •

CMA-ES

Self-CMAES •f1-24,20-D

(c) 20D

0 1 2 3
log10 of (#FEs / λ)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

CMA-ES

CMA-ES •

Self-CMAES •f1-24,40-D

(d) 40D

Fig. 4: Bootstrapped empirical cumulative distribution of VWCT for all functions
in 5D, 10D, 20D, 40D. Self-CMA-ES• and CMA-ES• use µ = λ

8 while CMA-ES

uses the default µ = λ
2 .

when CMA-ES is tuned off-line anew for each problem instance, Self-CMA-ES
remains a good alternative to CMA-ES, performing only slightly worse while
avoiding the huge computational cost of the tuning process.

More work is needed, however, in order to take full benefit of a very large
number of computing units, as the wall-clock time performance seems to stagnate
above 500 cores. Possible directions are to hybridize the method proposed here
with those proposed in [3] and [21] and also modify the adaptation mechanism
of the step-size σ. Another further direction is concerned with detecting situa-
tions where Self-CMA-ES adaptation mechanism performs poorly, and to switch
back to the default values for cc , c1 , cµ in such cases, thus guaranteeing per-
formances at least as good as those of CMA-ES. Another approach would be to
consider a portfolio of strategies in order to maximize the expected performance
of CMA-ES, that should include CMSA-ES [3], that outperforms CMA-ES in
large dimensions and population sizes.

12

133

0 1 2 3
log10 of (#FEs / λ)

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Self-CMAES •

CMA-ES •

CMA-ESf1-5,40-D

(a) Separable Functions in 40D

0 1 2 3
log10 of (#FEs / λ)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

Self-CMAES •

CMA-ES

CMA-ES •f6-9,20-D

(b) Low or moderate conditioning 20D

0 1 2 3
log10 of (#FEs / λ)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

CMA-ES

CMA-ES •

Self-CMAES •f10-14,40-D

(c) high conditioning Functions in 40D

0 1 2 3
log10 of (#FEs / λ)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

CMA-ES •

CMA-ES

Self-CMAES •f20-24,20-D

(d) Multi-modal functions with weak global
structure in 20D

Fig. 5: Some Bootstrapped empirical cumulative distribution of VWCT. Legend
as in Figure 4.

References

1. Auger, A., Hansen, N.: A Restart CMA Evolution Strategy with Increasing Pop-
ulation Size. In: CEC’05. vol. 2, pp. 1769–1776. IEEE (2005)

2. Bartz-Beielstein, T., Lasarczyk, C.W., Preuß, M.: Sequential Parameter Optimiza-
tion. In: CEC’05. vol. 1, pp. 773–780. IEEE (2005)

3. Beyer, H.G., Sendhoff, B.: Covariance Matrix Adaptation Revisited–the CMSA
Evolution Strategy–. In: G. Rudolph et al. (ed.) PPSN X, pp. 123–132. LNCS
5199, Springer Verlag (2008)

4. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K., et al.: A Racing Algorithm
for Configuring Metaheuristics. In: William B. Langdon et al. (ed.) Proc. ACM
GECCO’02. pp. 11–18 (2002)

5. Eiben, A., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in
Evolutionary Algorithms. In: Lobo, F., Lima, C.F., Michalewicz, Z. (eds.) Param-
eter Setting in Evolutionary Algorithms, pp. 19–46. Springer (2007)

13

134

6. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the Time Complexity of the
Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES).
Evolution Computation 11(1), 1–18 (2003)

7. Hansen, N., Niederberger, S., Guzzella, L., Koumoutsakos, P.: A Method for Han-
dling Uncertainty in Evolutionary Optimization with an Application to Feedback
Control of Combustion. IEEE Transactions on Evolutionary Computation 13(1),
180–197 (2009)

8. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 Function
Testbed. In: Rothlauf, F. (ed.) GECCO Companion. pp. 2389–2396. ACM (2009)

9. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-Parameter Black-Box Optimization
Benchmarking 2010: Experimental Setup. Tech. Rep. RR-7215, INRIA (2010)

10. Hansen, N., Ros, R., Mauny, N., Schoenauer, M., Auger, A.: Impacts of Invari-
ance in Search: When CMA-ES and PSO Face Ill-Conditioned and Non-Separable
Problems. Applied Soft Computing 11, 5755–5769 (2011)

11. Hoos, H.H.: Programming by Optimization. Communications of the ACM 55(2),
70–80 (2012)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based Optimization
for General Algorithm Configuration. In: Coello, C.A.C. (ed.) Learning and Intel-
ligent Optimization. pp. 507–523. LNCS 6683, Springer Verlag (2011)

13. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental inves-
tigation of model-based parameter optimisation: SPO and beyond. In: Rothlauf,
F. (ed.) GECCO’09. pp. 271–278. ACM (2009)

14. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an Automatic
Algorithm Configuration Framework. JAIR 36(1), 267–306 (2009)

15. Liao, T., Stützle, T.: Testing the impact of parameter tuning on a variant of IPOP-
CMA-ES with a bounded maximum population size on the noiseless BBOB testbed.
In: Proc. ACM GECCO. pp. 1169–1176. ACM (2013)

16. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The R-
package Irace, Iterated Race for Automatic Algorithm Configuration. Tech. Rep.
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

17. Loshchilov, I., Schoenauer, M., Sebag, M., Hansen, N.: Maximum Likelihood-based
Online Adaptation of Hyper-parameters in CMA-ES. In: Thomas Bartz-Beielstein
et al. (ed.) PPSN XIII, pp. 70–79. LNCS 8672, Springer Verlag (2014)

18. Nannen, V., Eiben, A.E.: Relevance Estimation and Value Calibration of Evolu-
tionary Algorithm Parameters. In: IJCAI’07. vol. 7, pp. 6–12 (2007)

19. Smit, S., Eiben, A.: Beating the ”World champion” Evolutionary Algorithm via
REVAC Tuning. In: Proc. IEEE Congress on Evolutionary Computation. pp. 1–8
(July 2010)

20. Smit, S., Eiben, A.: Parameter Tuning of Evolutionary Algorithms: Generalist vs.
Specialist. In: Cecilia Di Chio et al. (ed.) Applications of Evolutionary Computa-
tion. pp. 542–551. LNCS 6024, Springer Verlag (2010)

21. Teytaud, F.: A new selection ratio for large population sizes. In: Cecilia Di Chio
et al. (ed.) Applications of Evolutionary Computation, pp. 452–460. LNCS 6024,
Springer Verlag (2010)

22. Teytaud, F., Teytaud, O.: Log (λ) modifications for optimal parallelism. In: Robert
Schaefer et al. (ed.) PPSN XI, pp. 254–263. LNCS 6238, Springer Verlag (2010)

14

135

136

Towards Human-Competitive Game Playing for
Complex Board Games with Genetic Programming

Denis Robilliard and Cyril Fonlupt

LISIC, ULCO, Univ Lille–Nord de France, FRANCE

Abstract. Recent works have shown that Genetic Programming (GP) can be
quite successful at evolving human-competitive strategies for games ranging from
classic board games, such as chess, to action video games. However to our knowl-
edge GP was never applied to modern complex board games, so-called eurogames,
such as Settlers of Catan, i.e. board games that typically involve four character-
istics: they are non zero-sum games, multiplayer, with hidden information and
random elements. In this work we study how GP can evolve artificial players
from low level attributes of a eurogame named “7 Wonders”, that features all the
characteristics of this category. We show that GP can evolve competitive artificial
intelligence (AI) players against human-designed AI or against Monte Carlo Tree
Search, a standard in automatic game playing.

1 Introduction

Games are a classic AI research subject, with well-known successful results on games
like chess, checkers, or backgammon. However, complex board-games, also nicknamed
eurogames, still constitute a challenge, which has been initiated by such works as [1]
or [2] on the game “Settlers of Catan”, or [3] on the game “Dominion”. Most often these
games combine several characteristics among being no zero-sum games, multiplayer,
with incomplete information and random elements, together with little formalized ex-
pert knowledge on the subject. Monte-Carlo Tree Search (MCTS), which gained much
notoriety from the game of Go [4], seems a method of interest in this context because
it does not require background knowledge about the game. Genetic Programming (GP)
could also qualify as a possible alternative, for the very same reason.

In their pioneering work [5], Hauptman and Sipper were successful at develop-
ing winning strategies for chess endgames with GP, and Sipper also achieved impres-
sive results on Robocode and Backgammon [6]. For instance the top evolved strategy
for Backgammon was able to get a win percentage of 62.4% in a tournament against
Pubeval, one of the strongest linear neural network player. However to the best of our
knowledge, GP has never been used to automatically evolve a competitive player for a
complex eurogame.

In order to simplify the obtaining of an AI for eurogames, many published works
(whatever the AI engine) use some restricted game configuration or only a limited sub-
set of the game rules. E.g. in [2] no trade interactions between players are allowed, and
in [3] only a subset of the possible cards are used.

137

In this paper we focus on the creation of a GP evolved AI player for the “7 Wonders”
(7W) eurogame, presented in the next section. In order to test the potential of GP, one
of our requirements is to tackle the full game rules, including the trading mechanism.

In the next section we introduce the 7W game and its rules. Then we present the
program architecture that was used for evolving GP players. After dealing with specific
issues that arose during implementation or testing, we present our experiments and their
results.

2 Description of the “7 Wonders” Game

Board games are increasingly numerous, with more than 500 games presented each year
at the international Essen game fair. Among these, the game “7 Wonders” (7W), issued
in 2011, obtains a fair amount of success, with about 100,000 copies sold per year and
several expansion sets. It is basically a card game, whose theme is similar to the many
existing “civilization” computer games, where players develop a virtual country using
production of resources, trade, military and cultural improvements.

The 7W game belongs in the family of partially observable, multiplayer, stochastic,
and also competitive games (although in any N -player game with N > 2, several
players may share cooperative sub-goals, such as hindering the progress of the current
leading player). All these characteristics suggest that 7W is a difficult challenge for AI.

In a 7W game, from 3 to 7 players1 are first given a random personal board among
the 7 available, before playing the so-called 3 ages (phases) of the game. At the be-
ginning of each game age, each player gets a hidden hand of 7 cards. Then there are 6
rounds, where every player simultaneously selects a card from his hand and either:

– puts it on the table in his personal space;
– or puts it under his personal board to unlock some specific power;
– or discards it for 3 units of the game money.

The last decision (or move) is always possible, while the first two possible moves
depend on the player ability to gather enough resources from his board or from the
production cards he already played in his personal space. He can also use game money
to buy resources from cards played by his left and right neighbors. This trading decision
cannot be opposed by the opponent player(s) and the price is determined by the cards
already played.

After playing their card, there is a so-called drafting phase, where all players give
their hand of remaining cards to their left (age 1 and 3) or to their right (age 2) neighbor.
Thus the cards circulate from player to player, reducing the hidden information. When
there are less than 6 players, some cards from his original hand will eventually come
back to every player . On the 6th turn, when the players have only two cards remaining
in their hand, they play one of the two and discard the other (except with some player
board conditions).

The goal of the game is to score the maximum victory points (VP), which are
awarded to the players at the end of the game, depending on the cards played on the

1 While the rule allows 2 player games, these are played by simulating a 3rd “dumb” player.

138

table, under the boards and the respective amounts of game money. The cards are al-
most all different, but come in families distinguished by color : resources (brown and
gray), military (red), civil (blue), trade (yellow), sciences (green) and guilds (purple).
The green family is itself sub-divided between three symbols used for VP count.

This game presents several interesting traits for AI research, that also probably ex-
plain its success among gamers:

– it has a complex scoring scheme combining linear and non linear features: blue
cards provide directly VPs to their owner, red cards offer points only to the owner of
the majority of red cards symbols, yellow ones allow to save or earn game money,
green ones give their owner the number of identical symbols to the square, with
extra points for each pack of three different symbols.

– resource cards have delayed effect : they mainly allow a player to put VPs awarding
cards on later turns; this is also the case of green cards that, apart from the scoring
of symbols, allow some other cards to be played for free later on.

– there is hidden information when the players receive their hand of cards at the
beginning of each age of the game.

– there is a great interactivity between players as they can buy resources from each
others to achieve the playing of their own cards. Some cards also give benefits or
VPs depending on which cards have been played by the neighbors. Moreover the
drafting phase confronts players with the difficult choice of either playing a card
that gives them an advantage, or another less rewarding card that would advantage
a neighbor after the drafting phase.

– the game is strongly asymmetric relatively to the players, since all player boards
are different and provide specific powers (such as resources, or military symbols).
Thus some boards are oriented towards specific strategies, such as maximizing the
number of military symbols, or collecting green cards symbols, for example.

The number of different cards (68 for 3 players, from those 5 are removed randomly)
and the 7 specific boards, together with the delayed effect of many cards and the non
linear scoring, make it difficult to handcraft an evaluation function. Notably, the number
of VPs gained in the two first game ages (card deals) is a bad predictor of the final score,
since scoring points at this stage of the game usually precludes playing resource cards
that will be needed later on.

We can give an approximation of the state space size for 3 players, by considering
that there are 68 possible different cards, from those each player will usually play 18
cards. We thus obtain

(
68
18

)
×
(
50
18

)
×
(
32
18

)
= 1E38 possible combinations, neglecting

the different boards and the partition between on-table and behind-the-board cards that
would increase that number.

3 GP Individual Architecture

Devising a new strategy for a complex board game is typically choosing the best move
(or decision) for the player at every decision step of the game. As explained in section 2,
a player strategy for 7W is to choose the hopefully “best” couple composed of a card

139

and a way how to play it (on the board, under the board or discard). Our goal is to evolve
a program that is able to cope well enough on average with every game position.

For this purpose, the design of an evaluation function, able to rate how a given board
is promising for the current player, is a classic mean of obtaining an artificial player.
Once this evaluation function has been developed, one can implement a variant of the
well known minimax search algorithm. However, as explained in the presentation of the
game, crafting such a function from scratch is very challenging in the case of 7W, due
to the many different and often delayed ways of scoring points.

It feels natural to try and see if GP could evolve such an evaluation function. We
partly proceed along the lines explored for chess endgames in [5]:

– in a similar way, we want to minimize the depth of the search, using less brute-force
power and so use an efficient evaluation function for the current position;

– to the contrary, we will not use complex terminals for GP, for two motives. First
there is not much expert knowledge at disposal to suggest complex GP inputs for
7W. Second, we want to try and obtain a good Koza’s “A to I” ratio : can GP work
out competitive players from raw game attributes ? We will see that the answer is
positive.

Terminal set The terminal set is the most sensitive part as it should ideally embrace
the whole set of variables that are able to predict the game evolution. Our terminal set
is divided into two parts:

– a subset of 17 constant values of type real, regularly spaced in the interval [−2, 2],
intended to provide raw components for GP to build expressions;

– a subset of game related terminals. They try to embrace what a casual player may
use among the information provided by the current game state. For example, a
player will have a look at the military power of his left/right opponent, he may
evaluate the number of victory points awarded by his science cards, look at how
many different resources he has, and so on. As said above, we want as far as pos-
sible to avoid complex terminals, the sole exception being Xvp that computes the
total number of victory points already gained by the player (a computation which
usually needs too much time for a human to do during play).

All game related terminal are listed in Tab. 1. Their computational complexity is
low, so they will guarantee a quick GP player.

Many more terminals, reflecting various information that a player can use, could be
added. For instance most of the terminals introduced in Tab. 1 can be derived with a left
and right version to check the same information for opponents, such as is already done
with the military strength.

Function set The function set is kept simple. Following the classic example of Shan-
non’s evaluation function for a chessboard [7] that computes a linear weighted sum of
the number of pieces and of some piece combinations, we decided to restrict the func-
tion set to the 3 basic operations {+,−, ∗}. Note that even if the set may seem limited,
it allows non linear combinations of the terminals.

140

Table 1. Game related terminal set for “Seven Wonders”

Terminal Value type Note
Xmil int military strength of the current player
Xlmil int military strength of the left player
Xrmil int military strength of the right player
Xtrade int number of own commercial cards (yellow cards)
Xtradrsc int number of own yellow cards providing resources
Xcivil int number of own civil cards
Xrsc int number of own resource cards
Xdiffrsc int number of own different resource types
Xscience int number of own science cards
Xsciencep int victory points earned by own science cards
Xgold int number of own gold coins
Xchain int number of cards that could be chained (i.e. played for free)
Xage int current age (i.e. card deal number)
Xturn int current ply of the current age
Xvp int total victory points earned so far by the player

4 Computing Individual Fitness

The fitness evaluation is a tricky part when we have to evaluate a player. It is quite ob-
vious that playing against an under-average player or a random player will not provide
interesting feedback. Furthermore as the game has some stochastic features, a player
may win or lose even if his average level is better than those of his opponents. This
means that we must be very careful when evaluating the GP player.

In order to evaluate the GP individuals, we need to oppose them to other AIs. In the
absence of any human designed evaluation function that could be used in a minimax
framework for providing an opponent, we opted for the development of a rule-based
AI, and a MCTS player, that are presented below. Another solution could have been to
oppose a GP player to another (or some others) from the GP population: first experi-
ments seemed less promising, so this solution was put aside for the moment.

4.1 A rule-based AI

Designing rules for 7W seems rather easy and feels close to the way a beginner player
can proceed, considering the cards already played, those in hand, and deciding one’s
next move. Our rule-based AI (rule-AI) follows a set of rules of decreasing priority,
stated below, for the two first deals of a game (when a card is said as being “always
played”, it means of course if its cost is affordable):

– a card providing two or more different resource types is always played;
– a card providing a single resource type that is lacking to the rule-AI is always

played;

141

– a military card is always played if rule-AI is not currently the only leader in military
strength, and the card allows rule-AI to become the (or one of the) leading military
player(s);

– at random either the civil card with the greatest victory points (VP) award or one
science card is always played;

– a random remaining card is played;
– as a default choice, a random card is discarded.

Contrasting with the first two deals that mainly involve investment decisions, the last
deal of the game, in the so-called third age, appears as the time to exploit the previous
choices: the set of rules is now replaced by choosing the decision with best immediate
VP reward.

Clearly we do not hope to reach championship level with such a simplistic set of
rules, nonetheless the resulting player is able to beat human beginners. A comparison
with MCTS success rate is given below in Sect. 4.3.

4.2 MCTS player

The Monte-Carlo Tree Search algorithm (MCTS) has been recently proposed for deci-
sion-making problems [8, 9, 4]. Applications are numerous and varied, and encompass
notably games [10–14]. In games when evaluation functions are hard to design, MCTS
outperforms alpha-beta techniques and is becoming a standard approach. Probably the
best known implementation of MCTS is Upper Confidence Tree (UCT), presented be-
low.

The idea is to build an imbalanced partial subtree by performing many random
simulations from the current state of the game, and simulation after simulation biasing
these simulations toward those that give good results, thus exploring the most promising
part of the game tree. The construction is done incrementally and consists in three
different parts : descent in the partial subtree, growth by adding a new child under the
current leaf node, evaluation of the current branch by a random simulation of the end
of the game.

The descent is done by using a bandit formula, i.e. at node s, among all possible
children Cs, we choose to descend on next node s′ ∈ Cs that gives the best reward
according to the formula :

s′ ← arg max
j∈Cs

[
x̄j + KUCT

√
ln(ns)

nj

]

with x̄j the average reward for the node j (it is the ratio of the number of victories
over the number of simulations), nj the number of simulations for node j and ns is
the number of simulation for the node s, with ns =

∑
j nj . The constant KUCT is an

exploration parameter used to tune the trade-off between exploitation and exploration.
At the end of the descent part, a node which is outside the subtree has been reached and
is added to the sub-tree (unless this branch already reach the end of the game). In order
to evaluate this new node, a so-called playout is done: random decisions are taken until

142

the end of the game, when the winner is known and the success ratio of the new node
and all its ascendant are updated.

We refer the reader to the literature cited at the beginning of this subsection for more
information about MCTS, and also to [15] for a more detailed presentation of our MCTS
dedicated to 7W: we simply sketch some implementation details in the following. A
single N -player game turn (corresponding to the N player simultaneous decisions), is
represented in the MCTS subtree by N successive levels, thus for a typical 3-player
game with 3 ages and 6 cards to play per age, we get 3 × 6 = 18 decisions per player
and the depth of the tree is 18× 3 = 54. Of course we keep the simultaneous decisions,
that is the state of the game is updated only when reaching a subtree level whose depth
is a multiple of N , thus successive players (either real or simulated) make their decision
without knowing their opponent choices for the curent turn. The average node arity can
be estimated empirically at an average of 14 children per node, and a good value for
KUCT , also obtained empirically is between 0.3 and 0.5.

To implement MCTS one just need to know how to generate the possible moves
for the current state of the game. Its drawback is its running time: obtaining a good
level of play typically implies to simulate the completion (playout) of several thousands
games. To obtain a better trade-off between speed and quality, we increase the number
of playouts at game age 2 and 3 since the completion of the game simulations is shorter:
when we state N simulations, we mean N for the second game deal, 0.66 ∗ N for the
first deal, and 1.33 ∗N when playing the last deal (thus it is N simulations on average
for the whole game).

The tuning of MCTS, notably the KUCT constant, may be a bit tricky: we presented
this in [15], with the comparison of several MCTS enhancements. In the next sections
we use a refined value for KUCT = 0.5, that appears slightly better, and we present
new results.

4.3 Comparison of rule-AI and MCTS

To serve as a reference in Sect. 5, we compared the success rates of the two AIs pre-
viously described. When we opposed two rule-AIs to the MCTS player with 1500 and
3000 playouts and KUCT = 0.5 we obtain the resulting success rates on 5000 games:

Table 2. Comparisons of success rates (SR) for two identical rule-AIs and one MCTS player with
either 1500 or 3000 simulations per move.

MCTS simulations rule-AI-0 rule-AI-1 MCTS
1500 18.92% ± 1.09 21.10% ± 1.13 59.98% ± 1.36
3000 17.80% ± 1.06 17.76% ± 1.06 64.44% ± 1.33

As expected the two clones of rule-AI obtains very similar success rates. The MCTS
is a better player than rule-AI, and the bigger the number of simulations allowed per
move for MCTS, the better the success rate, as expected in theory.

143

4.4 Choosing Moves and Assigning Fitness for GP

In order for the GP individual to choose a move, we examine the resulting game state of
all possible GP moves, together with a random move of the opponents (remember that
all players move simultaneously). We usually do not know exactly which cards are in
the opponent hands, but we maintain the set of the possible cards in order to sample their
possible decisions, doing N determinizations. That means that we simulate a random
choice of opponents moves on their potential cards N times for each decision of the GP
player (see e.g. [16, 15] for an illustration of this technique). We select the GP move that
is associated to the biggest evaluation function value summed (or equivalently averaged)
on the set of determinizations. This is indeed equivalent to an expectimax search of
depth one.

Ideally an expectimax search should sample every possible opponent moves. In
our case, as there can be up to 1764 possible combinations of opponent moves due to
incomplete information, this would not be practically feasible: remember this must be
done for all moves, in all games, for all individuals and all generations. Thus we fix the
number of determinizations to N = 11, for the sake of rapidity: this is a low value but
it already yields a satisfying level of play.

When GP needs the fitness of an individual, we have to assess its quality as an eval-
uation function. We proceed by playing a set of P games where the GP individual is
opposed to other AIs. Finally the fitness is the success ratio (percentage of the games
won) obtained by GP on the P games. It proved necessary to train GP on several hun-
dred games to obtain a suitable fitness. Early experiments on 100 independent games
gave fragile GP players, that lost almost always with some configurations of player
boards (there are 210 such configurations). We settled on 500 games, composed with
25 different random player board configurations and 20 deals per configuration, to as-
sess one individual fitness. Again for the sake of speed, we chose ruleAI as the only
opponent for training GP since it is much faster than MCTS, but MCTS could still be
used for validation.

5 Experiments and results

We recall that we evolve GP players (strictly speaking evaluation functions) trained
against ruleAI, described previously, and the fitness is the success ratio obtained on 500
games. Each GP move is chosen as the one bringing the greatest evaluation value by a
depth one expectimax on 11 random determizations of opponent moves.

The default GP parameters are: population size of 25 individuals only, tournaments
of size 2, “steady state” worst individual replacement, crossover probability 0.6, point
mutation probability 0.15 and 100 generations. The population size is small compared
to usual practice, but it was required to reduce the computing time: a GP run against
rule-AI still take two days on a 32 cores Intel Xeon CPU E5-4603 v2 @ 2.20GHz ma-
chine with multi-threaded fitness computation. The parallelization is done on the 500
games needed to assess a significant fitness. We chose a crossover probability rather
less than standard, with a higher than usual mutation rate, for the sake of keeping more
diversity in such a small population. Time constraints prevented us to perform a system-

144

atic study of these parameters, however the results derived from this setting are already
satisfying.

Once a GP player is evolved, its success ratio is validated on 5000 games. Half of
the validation games are played on the same 25 board configurations used for training,
the other half is played on random configurations, and in both cases the card deals
are completely independent from the learning phase. Note that while evolution is time
consuming, the resulting GP program plays almost instantly. Validation on 5000 games
against rule-AI takes less than an hour, while against MCTS it still takes several days,
due to the MCTS cost.

5.1 Training GP versus 2 rule-AIs

When trained against two clones of rule-AI, GP yielded a best individual with fitness
0.754 at generation 93, that is the evolved player wins three games over four, while
the expected win rate is 0.33 if it were of the same strength as its opponents. Once
simplified (with a standard symbolic calculus package) this best individual, listed in
Fig. 1, is amenable to some analysis and interpretation.

(6*Xdiffrsc + 8*Xmil + 5*Xtrade + 9.5*Xtradrsc + 5*Xvp
- 4.875)*Xtradrsc + 4*Xdiffrsc + 5*Xmil + 5*Xsciencep +
3.0*Xtrade + 17*Xtradrsc + Xvp - 11.5

Fig. 1. Best individual trained against 2 rule-AIs, winning 70% of games (obtained at generation
90, average fitness 0.56)

While this individual is not a linear function, it remains a rather simple quadratic
polynomial and still looks like a traditional weighted combination of attributes. We can
see that some terminals are associated to strong weights, notably Xtradsrc the num-
ber of cards providing a choice of alternative resources, Xmil the military strength and
Xdiffrsc the number of different available resources. Intuitively these are important
inputs since having access to different resources help in developing one’s game and it
is rather difficult to win a game without any success in the military strategy. Indeed our
rule-AI uses similar information as highest criteria for decision taking — but with much
less success!

The validation experiment is presented in Tab. 3. The GP fitness being measured on
the training set, it proved to be too optimistic, as expected in theory. The validation win
rate is nonetheless superior to rule-AI and unexpectedly very close to the success rate
of MCTS parametered with 1500 simulations per move. It feels rather remarkable that
GP could evolved such a successful formula, that is:

– unique for the whole game,
– using only raw game attributes,
– able to choose the next move with a search of depth only one, which is almost

instantaneous.

145

Table 3. Comparisons of success rates (SR) for two identical rule-AIs and the GP player of Fig. 1.

rule-AI-0 rule-AI-1 GP
22.20% ± 1.15 21.52% ± 1.14 56.28% ± 1.37

5.2 Validation against MCTS with 1500 and 3000 playouts

In Tab. 4 we validate our best GP individual against rule-AI and MCTS. GP is the best
of the three, while MCTS wins the second rank. It seems curious since MCTS scored
better than GP when opposed only to ruleAI, but this is an illustration of the difficulties
raised when opposing three players: the strategies of two players may combined to the
detriment of the last. One can notice than MCTS still wins at least one third of the games
so it means that it is rule-AI which gives way to either GP or MCTS. By contrast, GP
appears rather robust in this context against the increase in MCTS simulations.

Table 4. Comparisons of success rates (SR) for one rule-AI, one MCTS with 1500 playouts, and
the GP player of Fig. 1.

MCTS simulations rule-AI MCTS GP
1500 24.14% ± 1.22 34.13% ± 1.35 41.72% ± 1.40
3000 20.40% ± 1.12 39.11% ± 1.35 40.49% ± 1.36

In Tab. 5, MCTS is opposed to 2 clones of GP. With 1500 playouts MCTS is no
more able to win one third of the games, thus clearly meaning that GP has a superior
play ability. But once the number of playouts is raised to 3000, this time MCTS is the
winner. Again, it is an illustration of the dependencies between more than two players:
there is no weak rule-AI player that GP can loot, and probably the two similar GP
individual hinder themselves by trying to share the same strategy.

Table 5. Comparisons of success rates (SR) for one MCTS with 1500 playouts, against two GP
player clones of Fig. 1.

MCTS simulations GP-1 GP-2 MCTS
1500 34.40% ± 1.32 35.34% ± 1.33 30.26% ± 1.27
3000 32.34% ± 1.30 31.82% ± 1.29 35.84% ± 1.33

These results show that GP can evolve successful players that can compete with
MCTS, the current method of choice when evaluation functions are not easy to obtain.
Notice that even if our GP individual plays remarkably against the other artificial oppo-
nents, it is not yet tough enough to deal with experienced human players. The absence

146

of information about opponent moves is a strong limitation that could be exploited by
humans.

On the one hand MCTS keeps the advantage of being improved simply by increas-
ing the number of simulations (although it may become too slow to be acceptable),
while on the other hand the GP player is several order of magnitude faster but cannot
be improved as easily.

6 Conclusion and future works

This study has shown that GP can evolve very competitive players for complex board
games in the eurogame category, even from basic inputs. The main technical problem
we encountered was the huge amount of computing time needed to obtain a signifi-
cant fitness. This prevented us, at least for the moment, to obtain GP players trained
against MCTS. We stress again that, on the opposite, once evolved, the resulting player
is almost instantaneous, several orders or magnitude faster than MCTS.

Training only against the ruleAI, which is a weak player, nonetheless allowed GP to
beat MCTS with 1500 playouts on average, and to compete with a 3000 playout MCTS
in a mixed players context. This a significant result which was unexpected, especially
as 3000 playouts already incurs a significant delay for MCTS.

Many tracks are opened by this study. Some are GP oriented such as co-evolving
programs by assessing fitness against the other individuals of the population; or trying
smarter terminals and expanding the function set to include e.g. “if” statements; or split-
ting the program in three subroutines, one for each deals of the game, in order to obtain
an increased level of play by adjusting the evaluation function to the current phase of
the game. Tuning the evolution parameters, and also the number of determinizations
are natural extensions, and also testing our GP evaluation function in an expectimax of
depth greater than one.

A more fundamental idea could be to try to bridge the gap between GP and MCTS,
e.g. using GP as a surrogate estimation of a fraction of the playouts, in order to speed
up MCTS, or using GP to build hyper-heuristics using MCTS sampling, GP evolved
evaluation functions and even rule-AI as building bricks. We could also try to learn
game patterns, following the ideas in [17]. At last, tackling other eurogames is also a
future objective.

References

1. Michael Pfeiffer. Reinforcement learning of strategies for Settlers of Catan. In Mehdi Q,
Gough N, Natkin S, and Al-Dabass D, editors, 5th international conference on computer
games: artificial intelligence, design and education, pages 384–388, 2004.

2. István Szita, Guillaume Chaslot, and Pieter Spronck. Monte-Carlo tree search in Settlers of
Catan. In Advances in Computer Games, pages 21–32. Springer Berlin Heidelberg, 2010.

3. Ransom K. Winder. Methods for approximating value functions for the Dominion card game.
Evolutionary Intelligence, 2013.

4. GMJB Chaslot, Jahn-Takeshi Saito, Bruno Bouzy, JWHM Uiterwijk, and H Jaap Van
Den Herik. Monte-Carlo strategies for computer Go. In Proceedings of the 18th BeNeLux
Conference on Artificial Intelligence, Namur, Belgium, pages 83–91, 2006.

147

5. Ami Hauptman and Moshe Sipper. GP-endchess: Using genetic programming to evolve
chess endgame players. In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano I. van
Hemert, and Marco Tomassini, editors, Proceedings of the 8th European Conference on Ge-
netic Programming, volume 3447 of Lecture Notes in Computer Science, pages 120–131,
Lausanne, Switzerland, 30 March - 1 April 2005. Springer.

6. Moshe Sipper. Evolving game-playing strategies with genetic programming. ERCIM News,
64:28–29, January 2008. Invited article.

7. Claude E. Shannon. Xxii. programming a computer for playing chess. Philosophical Maga-
zine (Series 7), 41(314):256–275, 1950.

8. Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Machine
Learning: ECML 2006, pages 282–293. Springer, 2006.

9. Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In
Computers and games, pages 72–83. Springer, 2007.

10. Sylvain Gelly and David Silver. Combining online and offline knowledge in uct. In Pro-
ceedings of the 24th international conference on Machine learning, pages 273–280. ACM,
2007.

11. Richard J Lorentz. Amazons discover Monte-Carlo. In Computers and games, pages 13–24.
Springer, 2008.

12. Tristan Cazenave. Monte-Carlo Kakuro. In H. Jaap van den Herik and Pieter Spronck,
editors, ACG, volume 6048 of Lecture Notes in Computer Science, pages 45–54. Springer,
2009.

13. Broderick Arneson, Ryan B Hayward, and Philip Henderson. Monte-Carlo tree search in
Hex. Computational Intelligence and AI in Games, IEEE Transactions on, 2(4):251–258,
2010.

14. F. Teytaud and O. Teytaud. Creating an upper-confidence-tree program for Havannah. Ad-
vances in Computer Games, pages 65–74, 2010.

15. Denis Robilliard, Cyril Fonlupt, and Fabien Teytaud. Monte-carlo tree search for the game
of 7 wonders. In Computer Games, pages 64–77. Springer International Publishing, 2014.

16. Daniel Whitehouse, Edward J Powley, and Peter I Cowling. Determinization and information
set Monte-Carlo tree search for the card game Dou Di Zhu. In Computational Intelligence
and Games (CIG), 2011 IEEE Conference on, pages 87–94. IEEE, 2011.

17. Jean-Baptiste Hoock and Olivier Teytaud. Bandit-based genetic programming. In Genetic
Programming, pages 268–277. Springer, 2010.

148

149

SGE: A Structured Representation for
Grammatical Evolution

Nuno Lourenço1, Francisco B. Pereira1,2, and Ernesto Costa1

1 CISUC, Department of Informatics Engineering, University of Coimbra,
Polo II - Pinhal de Marrocos, 3030 Coimbra, Portugal

2 Polytechnic Institute of Coimbra, Quinta da Nora, 3030-199 Coimbra, Portugal
{naml,xico,ernesto}@dei.uc.pt

Abstract. This paper introduces Structured Grammatical Evolution,
a new genotypic representation for Grammatical Evolution, where each
gene is explicitly linked to a non-terminal of the grammar being used.
This one-to-one correspondence ensures that the modification of a gene
does not affect the derivation options of other non-terminals, thereby in-
creasing locality. The performance of the new representation is accessed
on a set of benchmark problems. The results obtained confirm the effec-
tiveness of the proposed approach, as it is able to outperform standard
grammatical evolution on all selected optimization problems.

1 Introduction

Evolutionary Algorithms (EA) are computational methods inspired by the prin-
ciples of natural selection and genetics. Over the years they have been success-
fully used in different situations, including optimization, design or learning prob-
lems. Genetic Programming (GP) is an EA branch that is able to automatically
evolve computer programs/algorithmic strategies. One of the most relevant vari-
ants of GP is Grammatical Evolution (GE), whose distinctive feature is how it
decouples the genotype (a linear string) from the phenotype (a tree expression).
GE relies on a mapping process to translate the linear string into an executable
program. This transformation is guided by grammar production rules that help
to establish the set of syntactically correct programs.

The aim of this paper is to propose Structured Grammatical Evolution
(SGE), an enhanced genotypic representation for GE. In SGE there is a one-
to-one mapping between genes and non-terminals belonging to the grammar. In
order to allow a valid mapping, each gene encodes a list of integers that rep-
resent the possible derivation choices of the corresponding non-terminal. The
structured representation of SGE, in which a gene is explicitly linked to a non-
terminal, ensures that changes in a single genotypic position do not affect the
derivation options of other non-terminals. By removing these interactions, SGE
might help to solve some well-known locality issues that affect GE [8]. In the
next sections we describe the application of SGE to several GP benchmarks

150

2 Lourenço et al.

problems [10] and compare its performance against a standard GE approach.
The optimization results confirm the effectiveness and efficiency of SGE.

The remainder of the paper is organized as follows: Section 2 provides a
brief introduction to GE and reviews relevant contributions dealing with GE
representation. Section 3 introduces SGE and details the genotype-phenotype
mapping, whereas Section 4 comprises the optimization study. Finally, Section
5 gathers the main conclusions and presents some ideas for future work.

2 Grammatical Evolution

Grammatical Evolution (GE) is a form of Grammar-Based Genetic Program-
ming (GBGP) [5]. As with standard GP, the goal of GE is to evolve executable
algorithmic strategies. GE is different from other non grammar-based GP vari-
ants, for there is a separation of the genotype, a linear string, and the phenotype,
a program in the form of a tree expression. As a consequence, a mapping process
is required to map the string into an executable program, using the productions
rules of a context-free grammar (CFG). A CFG is a tuple G = (N,T, S, P),
where N is a non-empty set of non-terminal symbols, T is a non-empty set of
terminal symbols, S is an element of N called axiom, and P is a set of pro-
duction rules of the form A ::= α, with A ∈ N and α ∈ (N ∪ T)∗. N and
T are disjoint. Each grammar G defines a language L(G) composed by all se-
quences of terminal symbols (the words) that can be derived from the axiom:

L(G) = {w : S
∗⇒ w, w ∈ T ∗}.

The translation of the genotype into the phenotype is done by simulating a
leftmost derivation from the axiom of the grammar. This process scans the linear
sequence from left to right and each integer (i.e., each codon) is used to determine
the grammar rule that expands the leftmost non-terminal symbol of the current
partial derivation tree. Suppose that we have the following production rule,

< expr >::= < expr >< op >< expr > (0)

|(< expr >) (1)

| < pre− op > (< expr >) (2)

| < var > (3)
where there are four options to rewrite the left-hand side symbol < expr >.

In the beginning we have a sentential form equal to the axiom < expr >. To
rewrite the axiom one must choose which alternative will be used by taking the
first codon and dividing it by the number of options for < expr >. The remainder
of that operation will indicate the option to be used. In the example above,
assuming that the first integer is 8, it follows that 8%4 = 0 and the axiom is
rewritten in < expr >< op >< expr >. Then the second integer is read, and the
same method is used to the left most non-terminal of the derivation. Sometimes
the length of the string is not sufficient to complete the mapping. In those cases
the sequence is repeatedly reused in a process known as wrapping. If mapping
exceeds a pre-determined number of wrappings, the process stops and the worst
possible fitness value is assigned to the individual.

151

A Structured Representation for Grammatical Evolution 3

2.1 Other GE Representations

There are some reports in the literature describing enhancements to the standard
GE representation and mapping. The bucket rule from Keijzer et al. [3] allows
a given codon value to select different production choices, thereby removing the
bias created by the order of the grammar entries.

In [6], O’Neill et al. presented the Position Independent GE (πGE), an alter-
native genotype-phenotype mapping. In the traditional GE mapping there is a
positional dependency, as the derivation is always performed by expanding the
leftmost terminal in the derivation tree. πGE removes this dependency by creat-
ing codons with two values: nont and rule. In this case, nont helps to select the
next non-terminal NT to be expanded: NT = nont%count, where nont is the
value present in the genotype, and count is the number of non-terminals still in
the derivation tree. The rule value of the codon pair, as in standard GE, selects
which production rule should be applied from the selected non-terminal NT.

Chorus [9] is an alternative proposal aiming at developing a position inde-
pendent GE, although the results presented in the above mentioned reference do
not show any relevant advantage over standard GE.

Fagan and coworkers [1] compared the performance of several mapping mech-
anisms. Besides the aforementioned πGE and the traditional depth-first expan-
sion they considered two additional methods, breadth-first and a random expan-
sion mechanism, and concluded that πGE provides advantages over standard
GE. This result confirms that it is worthwhile to investigate new, alternative,
genotypic representations, together with the mapping process.

3 Structured Grammatical Evolution

In SGE each gene is linked to a specific non-terminal and is composed by a list
of integers. The length of each list is determined by computing the maximum
possible number of expansions of the corresponding non-terminal (see details in
section 3.1). This structure ensures that when a gene is modified, it does not
affect the derivation options of other non-terminals, thus narrowing the number
of changes that occur at the phenotypic level.

The values that are inside the lists correspond to the number of possible ex-
pansion choices. Therefore, when performing the mapping it is possible to remove
the modulo rule, thus reducing the redundancy associated with it. Consider the
following set of production rules:

< start >::= < int > | < int > ∗ < int >

< int >::=1|2|3|4
There are two non-terminals {< start >,< int >}. The genotype is composed
by two genes, where the first gene is linked to < start >, and the second to
< int >. Then it is necessary to compute the length of the gene’s lists by cal-
culating the maximum number of expansions of a non-terminal. The < start >
symbol is expanded only once, as it is the grammar axiom. The < int > symbol
is expanded, at most, twice, because of the rule < int > ∗ < int >. Thus the

152

4 Lourenço et al.

lists will have length 1 and 2, respectively. Finally, to fill them we count the
number of possible derivation options, cN , of each non-terminal and assign to
each position of the list a random value from the interval [0, cN −1]. Considering
the example above, the < start > symbol has cN = 2 and < int > has cN = 4.
Two possible genotypes are depicted in Fig. 1.

Genotype

<start> <int>

[1] [1,3]

(a) Genotype 1

Genotype

<start> <int>

[0] [0,3]

(b) Genotype 2

Fig. 1: SGE: Example of two possible genotypes

The process of translating a genotype into a phenotype is similar to the stan-
dard GE mapping. This process starts by expanding the axiom of the grammar,
and then expanding the non-terminals in a left-first manner. Consider the exam-
ple above, where the axiom is the non-terminal < start >. To expand it, we look
into its gene within the genotype (Fig. 1a). The first unused integer of the list is
1, which selects the option < int > ∗ < int >. The next symbol to be rewritten
is < int >. Its first unused integer is 1, thus it is replaced by the option “2”.
Next the second < int > is expanded. The first unused integer in the associated
gene is 3, which dictates the option “4” should be selected. As there are no more
symbols to expand, the process ends, and returns the phenotype: “2*4”. The
phenotype associated with the genotype of Fig. 1b is “1”.

3.1 Pre-Processing

The first step to construct the genotype is to compute an upper bound for the
number of times that a non-terminal can be expanded as it defines the list size
for each gene. Initially, we iterate through the productions belonging to the
grammar, and record the maximum number of references to non-terminals that
occur in each choice (Alg. 1). At the same time we build a set that dictates a
relation between non-terminals.

Finally, we iterate the set of non-terminals and determine recursively the
number of times that, at most, each non-terminal will be expanded (Alg. 2).

Consider the following set of production rules, with < start > as the axiom:

< start >::= < line > | < line > / < line >

< line >::= < var > ∗ < var >

< var >::=x1|x2|1
Using the algorithm described above to compute the size of each gene, we obtain:
< start >: 1, < line >: 2, < var >: 4. Then we determine the values of cN , i.e.,

153

A Structured Representation for Grammatical Evolution 5

Algorithm 1 Computation of the references that exist in the grammar.
countReferences← {}
isReferencedBy ← {}
for nt in nonTerminalsSet do

for production in grammar[nt] do
for option in production do

if option ∈ nonTerminalsSet then
isReferencedBy[option]← nt
count[option]← count[option] + 1

end if
end for

end for
for key in count do

countReferences[key][nt]← max(countReferences[key][nt], count[key])
end for

end for

Algorithm 2 Calculate the upper bound for the number of times that a non-
terminal can be expanded.

function findReferences(nt, isRefBy, countRefProd)
r ← getTotalReferencesOfProd(countRefProd, nt)
results← []
if nt = startSymbol then

return 1
end if
for ref in isRefBy[nt] do

result.add(findReferences(ref,isRefBy,countRefProd))
end for
references← references ∗max(result)

return references
end function

the number of derivation choices, for each non-terminal: < start >: 2, < line >:
1, < var >: 3.

3.2 Recursive Grammars

The pre-processing described in the previous section does not consider recursive
grammars. Standard GE deals with recursion by always trying to perform the
translation into an executable program. If it runs out of integers, GE assigns the
worst possible fitness value to the individual.

SGE deals with recursion in a different way, as it follows a preemptive ap-
proach: a maximum level of recursion must be defined beforehand. Hence it is
necessary to introduce a set of intermediate symbols that mimic the levels of the
recursion tree. The following example is an excerpt of a grammar for symbolic
regression problems:

< start >::= < expr >

< expr >::= < expr >< op >< expr > | < var >

< op >::= + | − | ∗ |/
< var >::=x

Looking into the grammar, we see that the < expr > production is recursive.

154

6 Lourenço et al.

Therefore it needs to be rewritten. Assuming that 2 levels of recursion were
defined it becomes:

< start >:= < expr >

< expr >::= < expr lvl 0 >< op >< expr lvl 0 >

| < var >

< expr lvl 0 >::= < expr lvl 1 >< op >< expr lvl 1 >

| < var >

< expr lvl 1 >::= < var >< op >< var > | < var >

< op >::= + | − | ∗ |/
< var >::=x

While transforming the grammar we ensure two things: first, that all the
symbols have the same probability of being selected after the transformation,
because they are copied to each new added level; second, that there will be no
invalid individuals, since the mapping process always ends.

All GP variants impose a constraint in the maximum program size, a manda-
tory step to prevent solutions from growing excessively and becoming compu-
tationally intractable. The constraint might be imposed in terms of tree depth,
number of available nodes [4], or by imposing limits on the number of wrappings
as performed in GE [5]. Following a similar line of procedure, SGE limits the
maximum program size by imposing a limit on the number of recursive calls.

3.3 Genetic Operators

GE relies on standard operators to navigate the search space looking for promis-
ing solutions to the problem at hand. Two existing variation operators are
adapted to work with SGE.

Recombination This operator is an adaptation of the uniform crossover for
binary representations. It starts by creating a binary mask with the same length
of the genotype. Then the offspring are created by selecting the parents genes
based on the mask values. Recombination does not modify the values of the lists
inside the genes. Fig. 2 illustrates an application of this operator.

Offspring 1

[1]

Parent 1

[0,0] [0,1,2,3]

Parent 2

[0] [1,1] [0,0,3,1]

0 1 1

Mask

[1] [1,1] [0,0,3,1]

Offspring 2

[0] [0,0] [0,1,2,3]

Fig. 2: Application of the recombination operator

155

A Structured Representation for Grammatical Evolution 7

Mutation This operator is based on the integer flip mutation. A gene is mutated
by randomly selecting a position inside the list and changing it to a new random
value from [0, cN − 1].

4 Experimental Analysis

To validate SGE, three problems were chosen following the guidelines proposed
by White et al. to select good GP benchmarks [10]: harmonic curve regression,
polynomial regression, and the Santa Fe Ant trail.

4.1 Problems Description

Harmonic Curve Regression The goal is to approximate the series defined by

x∑

i

1

i
(1)

where x ∈ [1, 50]. This problem is interesting as it complements the standard
interpolation task with a generalisation step. In this second stage, the interval
x ∈ [51, 120] is considered. The production set for the harmonic curve regression
is defined as:

< start >::= < expr >

< expr >::= < expr >< op >< expr > |(< expr >)

| < pre op > (< expr >)| < var >

< op >::= + |∗
< pre op >::= + | − |inverse|sqrt
< var >::=x

where inverse is 1/x.

Pagie Polynomial This is a hard symbolic regression problem [10], where the
goal is to approximate the polynomial function defined by:

1

1 + x−4
+

1

1 + y−4
(2)

156

8 Lourenço et al.

The function is sampled over the range [−5, 5], with a step s = 0.4. The
production set for this problem is defined as:

< start >::= < expr >

< expr >::= < expr >< op >< expr >

|(< expr >)

| < pre op > (< expr >)

| < var >

< op >::= + | − | ∗ |/
< pre op >::=sin|cos|exp|log
< var >::=x|y

Artificial Ant The goal is to evolve a strategy that an agent will follow to collect
food along the Santa Fe Ant trail. The production set used is the same as in [5].

4.2 Parameters

The GEVA implementation of GE was selected as the baseline of comparison for
our experiments. It is an open-source implementation of Grammatical Evolution,
in JAVA, and is developed and maintained by O’Neill et al. [7]. SGE was built
over the GEVA search engine. There are, however, some slight changes, such
as the set of variation operators used and the definition of a maximum level of
recursion. The parameters for both SGE and GEVA are defined in Table 1.

We performed 30 independent runs of each approach in the optimization
scenarios selected. When comparing SGE with GE a statistical analysis was
done to assess if there were differences in the means and, if that was the case,
how relevant they were. Since the samples do not follow a normal distribution,
the analysis was performed using non-parametric tests. Moreover, and since we
are dealing with two unrelated groups, the Mann-Whitney test, at a α = 0.05
level of significance, was selected. When differences exist we compute the effect
size r [2], to determine how large the differences are. For clarity, we used the
following notation: a +++ sign indicates that the effect size is large (r >= 0.5),
a ++ sign indicates that the effect size is medium (0.3 <= r < 0.5), whereas a
+ identifies a small effect size (0.1 <= r < 0.3).

4.3 Results

For the Harmonic Curve Regression, Fig. 3 shows the evolution of the Mean Best
Fitness (MBF). An inspection of results shows that the individuals in the initial
population of GE have a slightly better fitness, due to the sensible initialization
method. The figure also reveals that both GE variants gradually discover better

157

A Structured Representation for Grammatical Evolution 9

Table 1: Settings for the Experimental Analysis
Parameter GEVA SGE

Initial Population 500
Recombination rate 0.9

Mutation rate 0.02
Replacement Steady-State with a generation gap of 0.9

Selection Tournament with size 3
Generations 50

Recombination Operator Single Point Crossover SGE Uniform Crossover
Mutation Operator Integer Flip Mutation SGE Integer Flip Mutation

Genotype Size 128 (Ramped Half and Half Initialization) -
Wraps 3 -

Maximum Level of Recursion - 6

approximations as the run progresses. However SGE exhibits an increased effec-
tiveness, rapidly discovering solutions that surpass the ones found by GE. After
12 generations SGE has already found solutions better than the overall bests of
GE.

To estimate the generalization ability, we selected, for each variant (GE and
SGE), the best strategy from the initial, middle (gen. 25) and final generations.
We then applied the 6 selected strategies to the extended interval from the
harmonic curve regression problem. The obtained errors are displayed in Fig.
4. The bars reveal that strategies discovered in later GE and SGE generations
tend to obtain better results, suggesting that overfitting did not occur in the
interpolation stage. Also, pairs of strategies taken in the same generation (from
GE and SGE) obtain comparable results. There are never statistical significant
differences, suggesting that, in this particular problem, SGE and GE have similar
generalization ability. Finally, it is worth noting that the solutions evolved by
SGE seem to be more reliable, as they have a global smaller standard deviation
(0.24 vs. 0.4).

0 10 20 30 40 50
generations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

e
rr

o
r

Harmonic Number

GE
SGE

Fig. 3: Mean Best Fitness plots for the Harmonic Number

158

10 Lourenço et al.

GE SGE GE SGE GE SGE

0
1

2
3

4

Harmonic Curve Regression

algorithms

e
rr

o
r

initial

middle

final

Fig. 4: Mean Best Fitness plots for the Harmonic Curve Regression in the gen-
eralization task.

The next problem is the Pagie polynomial. The optimization results follow a
trend similar to the one identified in the first problem (Fig. 5). The individuals
of the initial population of SGE and GE have comparable fitness. Then, as op-
timization advances, SGE gradually and consistently obtains low error solutions
without stagnating. On the contrary, GE exhibits a slower evolution rate and it
stalls at some generations. Looking at the quality obtained by the two variants
in the end of the evolutionary run, there is a noticeable difference between SGE
and GE. SGE obtained solutions with considerable low error, which reinforces
its effectiveness when compared with GE.

0 10 20 30 40 50
generations

0.0

0.2

0.4

0.6

0.8

1.0

e
rr
o
r

Pagie

GE
SGE

Fig. 5: Mean Best Fitness plots for the Pagie Polynomial

Fig. 6 clearly shows that SGE outperforms GE in the Santa Fe Ant trail,
the last selected benchmark. Although the initial solutions of GE have a better
quality, at the end of the evolutionary process SGE provides consistently better
results. This is so that in all runs, SGE was able to find solutions that allow the
ant to eat all the food pieces in the board, leading to a success rate of 100%.

To validate the optimization results, SGE and GE were compared using the
statistical tools previously described. The outcomes presented in the column

159

A Structured Representation for Grammatical Evolution 11

Statistical Validation of Table 2 reveal that SGE provides statistical significant
improvements over the standard GE. We present the p-values obtained, to clarify
the magnitude of the differences. The highest p-value is the one for the harmonic
experiment, and it still is far from the α = 0.05 that was selected as level of
significance. We also computed the effect sizes, to assess how large the differences
were. The only problem were the effect size is medium (0.3 <= r < 0.5) is the
harmonic number. In all other problems the effect size is large. These results
suggest that SGE is a valid alternative to GE.

0 10 20 30 40 50
generations

0

10

20

30

40

50

60

70

80

e
rr

o
r

Santa Fe Trail

GE
SGE

Fig. 6: Mean Best Fitness plots for the Santa Fe Ant Trail

Table 2: Optimization Results: Mean Best Fitness and Standard Deviation over
30 runs

Statistical Validation
Problem GE SGE p-value Effect Size

Harmonic Curve Regression 0.20 (± 0.11) 0.13(± 0.05) 6.09 ∗ 10−3 ++
Pagie Polynomial 0.50 (± 0.26) 0.29 (± 0.09) 2.20 ∗ 10−6 +++

Santa Fe Ant Trail 21.40 (± 12.40) 0.00 (± 0.00) 9.45 ∗ 10−11 +++

5 Conclusion

In this paper we proposed Structured Grammatical Evolution (SGE), a new
genotypic representation for GE that explicitly considers the features of the
grammar being used. The definition of the genotype requires two pre-processing
steps: first, recursive productions are rewritten in a non-recursive format, which
requires the addition of several new non-terminals; then, an upper bound for the
maximum number of non-terminals expansion is computed. After pre-processing
is over, the structured genotype is defined. Each gene links to a specific non-
terminal and it encodes a list of integers that help to determine the derivation

160

12 Lourenço et al.

options during mapping. SGE effectiveness was tested on a set of benchmarks
problems and results were encouraging, as it was able to outperform the standard
GE representation in all selected problems. Moreover, it proved to be efficient,
as it needed a lower number of evaluations to discover good quality solutions

Standard GE has been criticized due to the low locality and extremely high
redundancy [8]. One of the goals of the representation proposed in this paper
is to enhance GE with a valuable tool to handle these two limitations. We are
currently performing a comprehensive set of empirical tests focused on locality.
Preliminary results are promising, as they confirm that SGE has higher locality
than standard GE [omitted reference]. In the near future we will extend the
analysis, in order to gain a deeper insight on how SGE impacts locality and
redundancy.

6 Acknowledgments

This work was partially supported by Fundação para a Ciência e Tecnologia
(FCT), Portugal, under the grant SFRH/BD/79649/2011.

References

1. Fagan, D., ONeill, M., Galván-López, E., Brabazon, A., McGarraghy, S.: An anal-
ysis of genotype-phenotype maps in grammatical evolution. In: Genetic Program-
ming, pp. 62–73. Springer (2010)

2. Field, A.P.: How to Design and Report Experiments. SAGE (2003)
3. Keijzer, M., O’Neill, M., Ryan, C., Cattolico, M.: Grammatical evolution rules:

The mod and the bucket rule. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C.,
Tettamanzi, A. (eds.) Genetic Programming, Lecture Notes in Computer Science,
vol. 2278, pp. 123–130. Springer Berlin Heidelberg (2002)

4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

5. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers, Norwell, MA, USA
(2003)

6. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S., Keenan, P.: πGrammatical
Evolution. In: Genetic and Evolutionary Computation GECCO 2004. vol. 3103,
pp. 617–629. Springer Berlin Heidelberg (2004)

7. O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., Brabazon, A.:
GEVA - Grammatical Evolution in Java. Tech. rep. (2008)

8. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Proceed-
ings of the 9th European Conference on Genetic Programming. pp. 320–330. Eu-
roGP’06, Springer-Verlag, Berlin, Heidelberg (2006)

9. Ryan, C., Azad, A., Sheahan, A., O’Neill, M.: No coercion and no prohibition,
a position independent encoding scheme for evolutionary algorithms–the chorus
system. In: Genetic Programming, pp. 131–141. Springer (2002)

10. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kron-
berger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better gp benchmarks: commu-
nity survey results and proposals. Genetic Programming and Evolvable Machines
14(1), 3–29 (2013)

161

162

Greedy Semantic Local Search for Small
Solutions

Robyn Ffrancon and Marc Schoenauer

TAO Project-team, INRIA Saclay - Île-de-France
Université Paris-Sud, 91128 Orsay Cedex, France

rffrancon@gmail.com, Marc.Schoenauer@inria.fr

Abstract. Semantic Backpropagation (SB) was introduced in GP so
as to take into account the semantics of a GP tree at all intermediate
states of the program execution, i.e., at each node of the tree. The idea is
to compute the optimal ”should-be” values each subtree should return,
whilst assuming that the rest of the tree is unchanged, and to choose
a subtree that matches as well as possible these target values. A single
tree is evolved by iteratively selecting and replacing a single node with
the best subtree from a static library. Replacements are made with the
primary aim of reducing the local error, and a secondary aim of reduc-
ing the tree size. Previous results for standard Boolean GP benchmarks
that have been obtained by the authors with another variant of SB are
improved in term of tree size. SB is then applied for the first time to
categorical GP benchmarks, and outperforms all known results to date
for three variable finite algebras.

1 Introduction

Local search algorithms are generally the most straightforward optimization
methods that can be designed on any search space that has some neighborhood
structure. Given a starting point (usually initialized using some randomized pro-
cedure), the search proceeds by selecting the next point, from the neighborhood
of the current point, which improves the value of the objective function, with sev-
eral possible variants (e.g., first improvement, best improvement, etc). When the
selection is deterministic, the resulting Hill Climbing algorithms generally per-
form poorly, and rapidly become intractable on large search spaces. Stochasticity
must be added, either to escape local minima (e.g. through restart procedures
from different random initializations, or by sometimes allowing the selection of
points with worse objective value than the current point), or to tackle very large
search spaces (e.g., by considering only a small part of the neighborhood of the
current point). The resulting algorithms, so-called Stochastic Local Search al-
gorithms (SLS) [2], are today the state-of-the-art methods in many domains of
optimization.

The concept of a neighborhood can be equivalently considered from the point
of view of some move operators in the search space: the neighborhood of a
point is the set of points which can be reached by application of that move

163

operator. This perspective encourages the use of stochasticity in a more flexible
way by randomizing the move operator, thus dimming the boundary between
local and global search. It also allows the programmer to introduce domain
specific knowledge in the operator design.

All (1+, λ)-EAs can be viewed as Local Search Algorithms, as the mutation
operator acts exactly like the move operator mentioned above. The benefit of
EAs in general is the concept of population, which permits the transfer of more
information from one iteration to the next. However in most domains, due to
their simplicity, SLS algorithms have been introduced and used long before more
sophisticated metaheuristics like Evolutionary Algorithms (EAs). But this is not
the case in the domain of Program Synthesis 1 where Genetic Programming
(GP) was the first algorithm related to Stochastic Search which took off and
gave meaningful results [3]. The main reason for that is probably the fact that
performing random moves on a tree structure rarely results in improving the
objective value (aka fitness, in EA/GP terminology).

Things have begun to change with the introduction of domain-specific ap-
proaches to GP, under the generic name of Semantic GP. For a given set of
problem variable values, the semantics of a subtree within a given tree is defined
as the vector of values computed by this subtree for each set of input values
(each fitness case). In Semantic GP, as the name implies, the semantics of all
subtrees are considered as well as the semantics of the context in which a subtree
is inserted (i.e., the semantics of its siblings), as first proposed and described in
detail in [6] (see also [10] for a recent survey). Several variation operators have
been proposed for use within the framework of Evolutionary Computation (EC)
which take semantics into account when choosing and modifying subtrees. In
particular, Semantic Backpropagation (SB) [11,5,7] were the first works to take
into account not only the semantic of a subtree to measure its potential useful-
ness, but also the semantics of the target node where it might be planted. The
idea of SB was pushed further in [1], a paper published by the authors, where
the first (to the best of our knowledge) Local Search algorithm, called Iterated
Local Tree Improvement (ILTI), was proposed and experimented with on stan-
dard Boolean benchmark problems for GP. Its efficiency favorably compared to
previous works (including Behavioural Programming GP [4], another successful
approach to learn the usefulness of subtrees from their semantics using Machine
Learning).

The present work 2 builds on [1] in several ways. Firstly, Semantic Backpro-
gation is extended from Boolean to categorical problems. Second, and maybe
more importantly, the algorithm itself is deeply modified and becomes Iterated
Greedy Local Tree Improvements (IGLTI): On one hand, the library from which
replacement subtrees are selected usually contain all possible depth-k subtrees
(k = 2 or k = 3). On the other hand, during each step of the algorithm, a
strong emphasis is put on trying to minimize the total size of the resulting tree.

1 see also [8] for a survey on recent program synthesis techniques from formal methods
and inductive logic programming, to GP.

2 that will also be presented at the Semantic Workshop (SMGP) at GECCO 2015,

164

Indeed, a modern interpretation of the Occam’s razor principle states that small
solutions should always be preferred to larger ones – the more so in Machine
Learning in general, where large solutions tend to learn ”by heart” the training
set, with poor generalization properties. And this is even more true when trying
to find an exact solution to a (Boolean or categorical) problem with GP. For in-
stance in the categorical domain of finite algebras (proposed in [9]), there exist
proven exact methods for generating the target terms. However these methods
generate solutions with millions of terms that are of little use to mathematicians.

The paper is organized as follows: Section 2 recalls the basic idea of Se-
mantic Backpropagation, illustrated in the categorical case here. Section 3 then
describes in detail the new algorithm IGLTI. Section 4 introduces the benchmark
problems, again concentrating on the categorical ones, and Section 5 presents
the experimental results of IGLTI, comparing them with those of the literature
as well as those obtained by ILTI [1]. Finally Section 6 concludes the paper,
discussing the results and sketching further directions of research.

2 Semantic Backpropagation

2.1 Hypotheses and notations

The context is that of supervised learning: The problem at hand comprises n
fitness cases, were each case i is a pair (xi, fi), xi being a vector of values for the
problem variables, and fi the corresponding desired tree output. For a given a
loss function `, the goal is to find the program (tree) that minimizes the global
error

Err(tree) =
i=n∑

i=1

`(tree(xi), fi) (1)

where tree(xi) is the output produced by the tree when fed with values xi.
In the Boolean framework, for instance, each input xi is a vector of Boolean

variables, and each output fi is a Boolean value. A trivial loss function is the
Hamming distance between Boolean values, and the global error of a tree is the
number of errors of that tree.

2.2 Rationale

The powerful idea underlying Semantic Backpropagation is that, for a given
tree, it is very often possible to calculate the optimal outputs of each node such
that the final tree outputs are optimized. Each node (and rooted subtree) is
analyzed under the assumption that the functionality of all the other tree nodes
are optimal. In effect, for each node, the following question should be asked:
What are the optimal outputs for this node (and rooted subtree) such that its
combined use with the other tree nodes produce the optimal final tree outputs?
Note that for any given node, its optimal outputs do not depend on its semantics
(actual outputs). Instead, they depend on the final tree target outputs, and the
actual output values (semantics) of the other nodes within the tree.

165

In utilizing the results of this analysis, it is possible to produce local fit-
ness values for each node by comparing their actual outputs with their optimal
outputs.

Similarly, a fitness value can be calculated for any external subtree by com-
paring its actual outputs to the optimal outputs of the node which it might
replace. If this fitness value indicates that the external subtree would perform
better than the current one, then the replacement operation should improve the
tree as a whole.

In the following, we will be dealing with a master tree T and a subtree library
L. We will now describe how a subtree (node location) s is chosen in T together
with a subtree s∗ in L to try to improve the global fitness of T (aggregation of
the error measures on all fitness cases) when replacing, in T , s with s∗.

2.3 Tree Analysis

For each node in T , the GLTI algorithm maintains an output vector and an
optimal vector. The ith component of the output vector is the actual output of
the node when the tree is executed on the ith fitness case; the ith component of
the optimal vector is the value that the node should take so that its propagation
upward would lead T to produce the correct answer for this fitness case, all other
nodes being unchanged.

The idea of storing the output values is one major component of BPGP [4],
which is used in the form of a trace table. In their definition, the last column of
the table contained target output values of the full tree – a feature which is not
needed here as they are stored in the optimal vector of the root node.

Let us now detail how these vectors are computed. The output vector is
simply filled during the execution of T on the fitness cases. The computation of
the optimal vectors is done in a top-down manner. The optimal values for the
top node (the root node of T) are the target values of the problem. Consider now
a simple tree with top node A and child nodes B and C. For a given fitness case,
denote by a, b and c their respective returned values, and by â, b̂ and ĉ their
optimal values (or set of optimal values, see below) 3. Assuming now that we
know â, we want to compute b̂ and ĉ (top-down computation of optimal values).

If node A represents operator F , then, by definition

a = F (b, c) (2)

and we want b̂ and ĉ to satisfy

â = F (b̂, c) and â = F (b, ĉ) (3)

i.e., to find the values such that A will take a value â, assuming the actual value
of the other child node is correct. This leads to

b̂ = F−1b (â, c) and ĉ = F−1c (â, b) (4)
3 The same notation will be implicit in the rest of the paper, whatever the nodes A,
B and C.

166

where F−1k is the pseudo-inverse operator of F which must be used to obtain the
optimum k̂ of variable k. The definition of the pseudo-inverse operators in the
Boolean case is simpler than that in the categorical case. Only the latter will be
discussed now – see [1] for the Boolean case.

Firstly, in the Boolean case, all operators are symmetrical - hence F−1b and
F−1c are identical. However, in the categorical problems considered here, the
(unique) operator is not commutative (i.e., the tables in Fig. 1 are not symmet-
rical), hence F−1b and F−1c are different.

Secondly, the pseudo-inverse operator is multivalued: for example, from in-
specting the finite algebra A4 (Fig. 1-left), it is clear to see that if â = 1 and
b = 0 then ĉ must equal 0 or 2. In which case we write ĉ = (0, 2). That is to
say, if c ∈ ĉ and b = 0 then a = 1. For this example, the pseudo-inverse operator
is written as F−1c (1, 0) = (0, 2). On the other hand, from Fig. 1-right, it comes
that F−1b (1, 0) = 0.

Now, consider a second example where the inverse operator is ill-defined.
Suppose â = 1, b = 1, and we wish to obtain the value of ĉ = F−1c (1, 1). From
inspecting row b = 1 of A4 we can see that it is impossible to obtain â = 1
regardless of the value of c. Further inspection reveals that â = 1 when b = 0
and c = (0, 2), or when b = 2 and c = 1.

Therefore, in order to chose ĉ for â = 1 and b = 1, we must assume that
b = 0 or that b = 2. If we assume that b = 2 we then have ĉ = 1. Similarly, if we
assume that b = 0 we will have ĉ = (0, 2). The latter assumption is preferable
because we assume that it is less likely for c to satisfy ĉ = 1 than ĉ = (0, 2). In
the latter case, c must be one of two different values (namely c = 0 or c = 2)
where as in the former case there is only one value which satisfies ĉ (namely
c = 1). We therefore choose F−1c (1, 1) = (0, 2). However, as a result, we must
also have F−1b (1, 0) = 0 and F−1b (1, 2) = 0.

Of course, for the sake of propagation, the pseudo-inverse operator should
also be defined when â is a tuple of values. For example, consider the case when
â = (1, 2), c = 0, and b̂ is unknown. Inspecting column c = 0 in A4 will reveal
that the only a value that will satisfy â (namely a = 1 satisfies â = (1, 2)) is
found at row b = 1. Therefore, in this case b̂ = F−1b ((1, 2), 0) = 1.

Using the methodologies outlined by these examples it is possible to derive
pseudo-inverse function tables for all finite algebras considered in this paper. As
an example, Fig. 2 gives the complete pseudo-inverse table for finite algebra A4.

Having defined the pseudo-inverse operators, we can compute, for each fitness
case, the optimal vector for all nodes of T , starting from the root node and
computing, for each node in turn, the optimal values for its two children as
described above, until reaching the terminals.

2.4 Local Error

The local error of each node in T is defined as the discrepancy between its output
vector and its optimal vector. The loss function ` that defines the global error
from the different fitness cases (see Eq. 1) can be reused, provided that it is ex-
tended to handle sets of values. In the categorical context, the distance between

167

c
A4 0 1 2
0 1 0 1

b 1 0 2 0
2 0 1 0

c
B1 0 1 2 3
0 1 3 1 0

b 1 3 2 0 1
2 0 1 3 1
3 1 0 2 0

Fig. 1. Function tables for the primary algebra operators A4 and B1.

â b ĉ

0
0 1
1 (0,2)
2 (0,2)

1
0 (0,2)
1 (0,2)
2 1

2
0 1
1 1
2 1

(0,1)
0 (0,1,2)
1 (0,2)
2 (0,1,2)

(0,2)
0 1
1 (0,1,2)
2 (0,2)

(1,2)
0 (0,2)
1 1
2 1

(0,1,2)
0 (0,1,2)
1 (0,1,2)
2 (0,1,2)

â c b̂

0
0 (1,2)
1 0
2 (1,2)

1
0 0
1 2
2 0

2
0 1
1 1
2 1

(0,1)
0 (0,1,2)
1 (0,2)
2 (0,1,2)

(0,2)
0 (1,2)
1 (0,1)
2 (1,2)

(1,2)
0 0
1 (1,2)
2 0

(0,1,2)
0 (0,1,2)
1 (0,1,2)
2 (0,1,2)

Fig. 2. Pseudo-inverse operator function tables for the A4 categorical benchmark.

different values should be independent of the values themselves (d(a, a) = 0 and
d(a, b) = 1 if a 6= b). This leads to the following extension of this standard
Hamming-like distance (for both the Boolean and categorical contexts): Denot-
ing the output and optimal values for node A on fitness case i as ai and âi
respectively, the local error Err(A) of node A is defined as

Err(A) =
∑

i

`(ai, âi) (5)

were

`(ai, âi) =

{
0, if ai ∈ âi

1, otherwise.
(6)

2.5 Subtree Library

Given a node A in T that is candidate for replacement (see next Section 3.1 for
possible strategies for choosing it), we need to select a subtree in the library L
that would likely improve the global fitness of T if it were to replace A. Because
the effect of replacement on the global fitness is, in general, beyond the scope
of this investigation, we have chosen to use the local error of A as a proxy.

168

Therefore, we need to compute the substitution error Err(B,A) of any node B
in the library, i.e. the local error of node B if it were inserted in lieu of node A.
Such error can obviously be written as

Err(B,A) =
∑

i

`(bi, âi) (7)

Then, for a given node A in T , we can find best(A), the set of subtrees in L
with minimal substitution error,

best(A) = {B ∈ L;Err(B,A) = minC∈L(Err(C,A)}) (8)

and then define the Expected Local Improvement I(A) as

I(A) = Err(A)− Err(B,A) for some B ∈ best(A) (9)

If I(A) is positive, then replacing A with any node in best(A) will improve the
local fitness of A. Note however that this does not imply that the global fitness of
T will improve. Indeed, even though the local error will decrease, the erroneous
fitness cases may differ, which could adversely affect the whole tree. On the other
hand, if I(A) is negative, no subtree in L can improve the global fitness when
inserted in lieu of A.

Two different IGLTI schemes were tested on the categorical benchmarks
which we will refer to as: IGLTI depth 2 and IGLTI depth 3. In the IGLTI
depth 2 scheme the library consisted of all semantically unique trees from depth
0 to depth 2 inclusive. Similarly, in the IGLTI depth 3 scheme all semantically
unique trees from depth 0 to depth 3 were included. Only the IGLTI depth 3
scheme was tested on the Boolean benchmarks. In this case, the library size was
limited to a maximum of 40000 trees.

The library for the ILTI algorithm was constructed from all possible seman-
tically unique subtrees of 2500 randomly generated full trees of depth 2. In this
case the library had a strict upper size limit of 450 trees and the library gen-
erating procedure immediately finished when this limit was met. Note that for
the categorical benchmarks, the size of the library was always below 450 trees.
For the Boolean benchmarks on the other hand, the library size was always 450
trees.

In the process of generating the library (whatever design procedure is used),
if two candidate subtrees have exactly the same outputs, only the tree with fewer
nodes is kept. In this way, the most concise generating tree is stored for each
output vector. The library L is ordered by tree size, from smallest to largest,
hence so is best(A). Table 1 gives library sizes for each categorical benchmarks.

169

Algorithm 1 Procedure GLTI(Tree T , library L)
Require: Err(A) (Eq. 5), Err(B,A) (Eq. 7), A ∈ T , B ∈ L

1 T ← {A ∈ T ; if Err(A) 6= 0}

2 bestErr ← +∞
3 bestReduce← +∞
4 bestANodes← {}

5 for A ∈ T do . Loop over nodes which could be improved
6 A.minErr ← +∞
7 A.minReduce← +∞
8 A.libraryTrees← {}
9 indexA← index position of A in tree T

10 for B ∈ L do . Loop over trees in library
11 if B ∈ T.bannedBTrees(indexA) then
12 continue

13 BReduce← size(B)− size(A)

14 if Err(B,A) < A.minErr then
15 A.minErr ← Err(B,A)
16 A.minReduce← BReduce
17 A.libraryTrees← {B}

18 if Err(B,A) = 0 then
19 break . Stop library search for current A

20 else if Err(B,A) = A.minErr then
21 if BReduce < A.minReduce then
22 A.minReduce← BReduce
23 A.libraryTrees← {B}

24 else if BReduce = A.minReduce then
25 A.libraryTrees.append(B)

26 if A.minErr < bestErr then
27 bestErr ← A.minErr
28 bestReduce← A.minReduce
29 bestANodes← {A}

30 else if A.minErr = bestErr then
31 if A.minReduce < bestReduce then
32 bestReduce← A.minReduce
33 bestANodes← {A}

34 else if A.minReduce = bestReduce then
35 bestANodes.append(A)

36 chosenA← random(bestANodes)
37 chosenB ← random(chosenA.libraryTrees)

38 indexA← index position of chosenA in T
39 T.bannedBTrees(indexA).append(chosenB)

40 return chosenA, chosenB, T 170

Table 1. Library sizes for each categorical benchmark.

.

Library size
Benchmark IGLTI IGLTI ILTI

depth 3 depth 2 depth 2
D.A1 16945 138 72
D.A2 19369 144 78
D.A3 18032 145 81
D.A4 14963 133 69
D.A5 20591 145 81
M.A1 12476 134 68
M.A2 16244 144 78
M.A3 10387 145 81
M.A4 11424 130 66
M.A5 19766 145 81
M.B 21549 - 81

3 Tree Improvement Procedures

3.1 Greedy Local Tree Improvement

Everything is now in place to describe the full GLTI algorithm, its pseudo-code
can be found in algorithm 1. The algorithm starts (line 1) by storing all nodes
A ∈ T where Err(A) 6= 0 in the set T . Then, the nodes in T are each examined
individually (line 5).

The library L is inspected (lines 14 - 25) for each node A ∈ T with the aim of
recording each associated library tree B which firstly minimises Err(B,A) and
secondly minimises BReduce = size(B) − size(A). In the worst case, for each
node A, every tree B within the library L is inspected. However, the worst case
is avoided, and the inspection of the library is aborted, if a tree B ∈ L is found
which satisfies Err(B,A) = 0.

The master tree T can effectively be seen as an array where each element
corresponds to a node in the tree. When a library tree B replaces a node and its
corresponding rooted subtree in T a record is kept of the index position at which
B was inserted. For a node A in the master tree, at line 11 the algorithm ensures
that the library trees which have previously been inserted at the T array index
position of node A are not considered for insertion again at that index position.
This ensures that the algorithm does not become stuck in repeatedly inserting
the same B trees to the same array index positions of the master tree T .

After inspecting the library for a given node A, the values A.minErr and
A.minReduce are used to determine the set of the very best A ∈ T nodes,
bestANodes ⊆ T (lines 26 - 35).

Next, the algorithm (line 36) randomly chooses a node chosenA ∈ bestANodes
and randomly chooses an associated tree from its best library tree set
chosenB ∈ chosenA.libraryTrees.

Finally, the algorithm records the chosen library tree chosenB as having been
inserted at the array index position of chosenA in T .
Complexity Suppose that the library L is of size o. The computation of the
output vectors of all trees in L is done once and for all. Hence the overhead of
one iteration of GLTI is dominated, in the worst case, by the comparisons of the

171

optimal vectors of all m nodes in T with the output vectors of all trees in L,
with complexity n×m× o.

3.2 Iterated GLTI

In the previous section, we have defined the GLTI procedure that, given a master
tree T and a library of subtrees L, selects a node chosenA in T and a subtree
chosenB in L to insert in lieu of node chosenA so as to minimize some local
error over a sequence of fitness cases as primary criterion, and the full tree size
as secondary criterion. In this section we will turn GLTI into a full Stochastic
Search Algorithm.

As discussed in [1], or as done in [7], GLTI could be used within some GP
algorithm to improve it with some local search, ”à la” memetic. However, follow-
ing the road paved in [1], we are mainly interested here in experimenting with
GLTI a full search algorithm that repeatedly applies GLTI to the same tree.
Note that the same tree and the same library will be used over and over, so the
meaning of ”iterated” here does not involve random restarts. On the other hand,
the only pressure toward improving the global fitness will be put on the local
fitness defined by Eq. 9. In particular, there are cases where none of the library
trees can improve the local error: the smallest decrease is nevertheless chosen,
hopefully helping to escape some local optimum.

The parameters of IGLTI are the choice of the initial tree, the method (and
its parameters) used to create the library, and the size of the library. The end of
the paper is devoted to some experimental validation of IGLTI and the study
of the sensitivity of the results w.r.t. its most important parameter, the depth
of the library trees.

3.3 Modified ILTI

The ILTI scheme (first introduced in [1]) was modified for use in this paper.
In the IGLTI algorithm, a record is kept of which library trees were inserted
at each array index positions of the master tree. This feature ensured that the
same library tree was not inserted at the same array index positions of the master
tree more than once. This feature was also implemented in the modified ILTI
scheme. Note that for the rest of this paper the modified ILTI scheme will simply
be referred to as the ILTI scheme.

4 Experimental Conditions

The benchmark problems used for these experiments are classical Boolean prob-
lems and some of the finite algebra categorical problems which have been pro-
posed in [9] and recently studied in [4,7]. For the sake of completeness, we reit-
erate their definitions as stated in [4].

”The solution to the v-bit Comparator problem Cmp-v must return true if the
v
2 least significant input bits encode a number that is smaller than the number

172

represented by the v
2 most significant bits. For the Majority problem Maj-v, true

should be returned if more than half of the input variables are true. For the
Multiplexer problem Mul-v, the state of the addressed input should be returned
(6-bit multiplexer uses two inputs to address the remaining four inputs, 11-bit
multiplexer uses three inputs to address the remaining eight inputs). In the
Parity problem Par-v, true should be returned only for an odd number of true
inputs.

The categorical problems deal with evolving algebraic terms and dwell in the
ternary (or quaternary) domain: the admissible values of program inputs and
outputs are {0, 1, 2} (or {0, 1, 2, 3}. The peculiarity of these problems consists of
using only one binary instruction in the programming language, which defines
the underlying algebra. For instance, for the A4 and B1 algebras, the semantics
of that instruction are given in Figure 1.

For each of the five algebras considered here, we consider two tasks. In the
discriminator term tasks, the goal is to synthesize an expression (using only the
one given instruction) that accepts three inputs x, y, z and returns x if x 6= y
and z if x = y. In ternary domain, this gives rise to 33 = 27 fitness cases.

The second task defined for each of algebras consists in evolving a so-called
Mal’cev term, i.e., a ternary term that satisfies m(x, x, y) = m(y, x, x) = y.
Hence there are only 15 fitness cases for ternary algebras, as the desired value
for m(x, y, z), where x, y, and z are all distinct, is not determined.”

In the ILTI algorithm a master tree is initialised as a random full tree of
depth 2. For the IGLTI algorithm, the initial master tree is chosen as the best
performing subtree from the subtree library. If there are multiple library trees
with the same performance, the smallest tree is chosen.

Hard run time limits of 5000 seconds were set for each experiment. A run
was considered a failure if a solution was not found within this time.

All results were obtained using an 64bits Intel(R) Xeon(R) CPU X5650 @
2.67GHz. All of the code was written in Python4.

5 Experimental results

Figure 3 shows standard box-plots for solution tree sizes obtained while testing
the ILTI and IGLTI depth 3 algorithms on the 6 bit and Cmp08 Boolean bench-
marks. It shows how the IGLTI algorithm finds solution trees which are smaller
(number of nodes) than those found by the ILTI algorithm. Four failed runs are
reported in this figure which occurred when the IGLTI depth 3 algorithm was
tested on the Cmp08 benchmark.

The figure also shows how the spread of solution sizes are generally narrower
for IGLTI depth 3 than for ILTI. The only exception to this generality is the
results of the Cmp08 benchmark. Additional supporting data for this figure is
given in Table 2. From inspecting the figure and table together, it is clear that the
20 solution trees obtained from testing IGLTI depth 3 on the Mux06 benchmark
were all of the same size.
4 The entire code base is freely available at robynffrancon.com/GLTI.html

173

Cmp06 Maj06 Par06 Mux06 Cmp08
Benchmarks

0

100

200

300

400

500

Nu
mb

er
of

nod
es

in s
olu

tio
n t

ree

LTI
GLTI - depth 3

�

Fig. 3. Standard box-plots for the program solution tree sizes (number of nodes) for
the ILTI algorithm and IGLTI depth 3 algorithm tested on the Boolean benchmarks.
Each algorithm performed 20 runs for each benchmark. Perfect solutions were found
from each run except for the Cmp08 benchmark where the IGLTI algorithm failed 4
times (as indicated by the red number four).

Figure 4 shows standard box-plots for the number of operators used in the
categorical benchmark solutions which were found using the ILTI, IGLTI depth
3, and IGLTI depth 2 schemes. Supporting data for this figure can also be seen
in Table 2. However, note that this table measures tree sizes by the number of
nodes and not by the number of operators.

The figure shows how the IGLTI depth 3 scheme found the smallest solutions
on the D.A2, D.A4, D.A5, M.A1, and M.A2 benchmarks. For all other three
variable categorical benchmarks, the IGLTI depth 2 scheme found the smallest
solutions. In all cases, the spread of solution sizes (number of operators) were
smallest for IGLTI depth 3 and largest for the ILTI scheme. Reminiscent of the
Mux06 benchmark results, the IGLTI depth 3 scheme found twenty solutions
which were all of the same size when tested on the M.A3 benchmark.

Table 2 gives the algorithm runtimes for each benchmark. The ILTI algorithm
is the best performing algorithm for this measure. However, note that the IGLTI
depth 2 scheme showed similar average runtimes (but larger spreads) for the
three variable Mal’cev term benchmarks.

Nine runs of the ILTI algorithm failed to find a solution within the 5000
second time limit when testing on the M.B benchmark. An average of 387.2 ±
283.0 operators were used per correct solution. The IGLTI depth 3 scheme failed
to find a solution once when testing on the M.B benchmark. An average of
88.4± 21.4 operators were used by the correct solutions found in this case.

6 Discussion and Further Work

The results presented in this paper show that SB can be successfully used to solve
standard categorical benchmarks when the pseudo-inverse functions are carefully
defined. Furthermore, the IGLTI algorithm can be used to find solutions for the
three variable categorical benchmarks, which are small enough to be handled

174

Table 2. Run time (seconds) and program size (number of nodes) results for the ILTI
algorithm and IGLTI algorithm (library tree maximum depths 2 and 3) tested on the
6bits Boolean benchmarks and the categorical benchmarks. 20 runs were conducted
for each benchmark. The best average results from each row are in bold. The BP4A
column is the results of the best performing algorithm of [4]. All runs found perfect
solutions with the exception of those indicated by *.

Run time [seconds]
IGLTI - library depth 3 IGLTI - library depth 2 modified ILTI BP4A

mean min mean min mean min mean
D.A1 298.1 ± 15.2 272.3 9.8 ± 6.8 2.3 2.6 ± 1.4 1.1 136*
D.A2 315.5 ± 18.9 289.6 4.7 ± 2.2 2.0 1.3 ± 0.3 0.8 95*
D.A3 302.2 ± 23.0 276.7 4.0 ± 3.0 1.0 1.2 ± 0.4 0.7 36*
D.A4 308.0 ± 24.4 268.9 53.5 ± 69.6 4.0 5.3 ± 3.3 2.7 180*
D.A5 349.2 ± 39.7 282.6 23.8 ± 9.0 11.9 3.1 ± 1.6 0.9 96*
M.A1 191.3 ± 15.7 162.5 1.1 ± 0.6 0.4 1.0 ± 0.3 0.5 41*
M.A2 241.2 ± 8.6 230.8 1.0 ± 0.4 0.5 0.8 ± 0.2 0.4 21*
M.A3 161.7 ± 7.4 148.0 0.8 ± 0.3 0.4 0.9 ± 0.2 0.5 27*
M.A4 171.1 ± 5.7 160.7 3.2 ± 1.3 1.3 1.0 ± 0.3 0.5 9
M.A5 298.1 ± 20.8 263.9 1.7 ± 1.1 0.4 0.9 ± 0.2 0.5 14
M.B 2772.9* ± 1943 432* - - 843.6* ± 876.2 4* -

Cmp06 111.3 ± 23.3 61.4 - - 4.1 ± 0.6 2.9 15
Maj06 95.7 ± 13.0 70.7 - - 4.1 ± 0.5 2.9 36
Par06 258.2 ± 53.2 164.7 - - 13.2 ± 2.5 7.9 233
Mux06 66.1 ± 6.4 48.8 - - 4.1 ± 0.8 2.6 10

Program size [nodes]
D.A1 95.3 ± 4.4 91 80.7 ± 14.1 55 260.5 ± 122.0 137 134*
D.A2 65.7 ± 15.9 41 92.0 ± 18.7 43 144.5 ± 48.1 81 202*
D.A3 65.1 ± 4.4 61 54.7 ± 6.6 45 146.1 ± 46.4 79 152*
D.A4 84.9 ± 10.4 67 92.6 ± 12.4 67 320.9 ± 84.8 187 196*
D.A5 64.6 ± 10.8 47 98.0 ± 23.1 57 238.0 ± 100.1 89 168*
M.A1 37.8 ± 2.4 37 46.9 ± 7.9 33 104.4 ± 41.9 43 142*
M.A2 44.8 ± 3.2 33 44.3 ± 7.7 33 70.8 ± 18.2 45 160*
M.A3 49.0 ± 0.0 49 34.8 ± 3.2 31 143.1 ± 51.0 75 104*
M.A4 47.9 ± 2.9 41 49.8 ± 10.9 33 119.5 ± 35.6 61 115
M.A5 37.8 ± 1.8 35 31.7 ± 13.1 21 77.1 ± 26.2 33 74
M.B 179.4* ± 42.3 95* - - 1591.4* ± 1078.6 353* -

Cmp06 32.9 ± 5.2 27 - - 64.1 ± 11.9 51 156
Maj06 51.2 ± 3.3 47 - - 71.4 ± 7.6 57 280
Par06 260.0 ± 12.1 233 - - 436.0 ± 29.3 361 356
Mux06 21.0 ± 0.0 21 - - 46.3 ± 11.8 33 117

by a human mathematician (approximately 45 operators), faster than any other
known method.

Interestingly, the results suggest that using a larger library can sometimes
lead to worse results (compare the IGLTI depth 2 and IGLTI depth 3 algorithms
on the D.A3 benchmark for instance). This is likely as a result of the very greedy
nature of the IGLTI algorithm. A larger library probably provided immediately
better improvements which lead the algorithm away from the very best solutions.

Future work should entail making modification to the IGLTI algorithm so
that it is less greedy. In principle, these modifications should be easy to imple-
ment by simply adding a greater degree of stochasticity so that slightly worst
intermediate results can be accepted. Furthermore, the pseudo-inverse functions
should be tested as part of schemes similar to those which feature in [7] with
dynamic libraries and a population of potential solutions.

175

References
1. R. Ffrancon and M. Schoenauer. Memetic semantic genetic programming. In

S. Silva and A. Esparcia, editors, Proc. GECCO. ACM, 2015. To appear.
2. H. H. Hoos and Th. Stützle. Stochastic Local Search. Morgan Kaufmann, 2005.
3. John R Koza. Genetic Programming: on the Programming of Computers by means

of Natural Selection, volume 1. MIT press, 1992.
4. K. Krawiec and U.-M. O’Reilly. Behavioral Programming: A Broader and More

Detailed Take on Semantic GP. In Dirk Arnold et al., editor, Proc. GECCO, pages
935–942. ACM Press, 2014.

5. K. Krawiec and T. Pawlak. Approximating Geometric Crossover by Semantic
Backpropagation. In Ch. Blum and E. Alba, editors, Proc. 15th GECCO, pages
941–948. ACM, 2013.

6. N. F. McPhee, B. Ohs, and T. Hutchison. Semantic Building Blocks in Genetic
Programming. In M. O’Neill et al., editor, Proc. 11th EuroGP, volume 4971 of
LNCS, pages 134–145. Springer Verlag, 2008.

7. T. Pawlak, B. Wieloch, and K. Krawiec. Semantic Backpropagation for Design-
ing Search Operators in Genetic Programming. Evolutionary Computation, IEEE
Transactions on, PP(99):1–1, 2014.

8. U. Schmid, E. Kitzelmann, and R. Plasmeijer, editors. Inductive Programming: A
Survey of Program Synthesis Techniques. LNCS 5812, Springer Verlag, 2010.

9. Lee Spector, David M Clark, Ian Lindsay, Bradford Barr, and Jon Klein. Genetic
Programming for Finite Algebras. In C. Ryan and M. Keijzer, editors, Proc. 10th
GECCO, pages 1291–1298. ACM, 2008.

10. L. Vanneschi, M. Castelli, and S. Silva. A Survey of Semantic Methods in GP.
Genetic Programming and Evolvable Machines, 15(2):195–214, 2014.

11. B. Wieloch and K. Krawiec. Running Programs Backwards: Instruction Inversion
for Effective Search in Semantic Spaces. In Ch. Blum and E. Alba, editors, Proc.
15th GECCO, pages 1013–1020. ACM, 2013.

D.A1 D.A2 D.A3 D.A4 D.A5 M.A1 M.A2 M.A3 M.A4 M.A5
Benchmarks

0

50

100

150

200

250

300

Nu
mb

er
 of

 tim
es

 op
er

at
or

 us
ed

 in
 so

lut
ion

LTI
GLTI - depth 2
GLTI - depth 3

Fig. 4. Standard box-plots for the number of operators in program solutions for the
ILTI algorithm and IGLTI algorithm (library tree maximum depths 2 and 3) tested on
the categorical benchmarks. Each algorithm performed 20 runs for each benchmark.
Perfect solutions were found from each run.

176

177

Effects of Cooperation in a Bioinspired
Multi-agent Autonomous System for Solving

Optimization Problems

Marcus dos Santos1, Denise Souza1, Henrique E. Borges1, Rogério M. Gomes1,
and Patrick Siarry2

1 CEFET/MG, Laboratory of Intelligent Systems,
Av. Amazonas, 7675 - Belo Horizonte - MG - Brazil - CEP 30510-000
{marcusricardo, densouza, henrique, rogerio@lsi.cefetmg.br},

2 Université Paris Est Créteil, LiSSi,
122 rue Paul Armangot, 94400 Vitry-sur-Seine, France

{siarry@u-pec.fr}

Abstract. Bimasco - Bioinspired Multi-Agent System for Combinato-
rial Optimization - consists of an autonomous multi-agent system for
solving optimization problems of different classes. This system uses the
metaphor of artificial life in which the artificial world represents the
search space of a problem, populated by a set of feasible solutions of
the problem and grouped into inanimate entities, called regions. Simi-
larly, the world is inhabited by animated entities, agents, each encap-
sulating one metaheuristic. In this context, this paper introduces an
asynchronous and non-deterministic model for the dynamics of interac-
tions among agents and regions, so that it operates as a self-organizing
discrete dynamical system. Computational experiments were performed
using different classes of combinatorial as well as non-combinatorial op-
timization problems, including one problem involving a function, which
is usually used as benchmark for continuous optimization methods and
the knapsack problem. The preliminary results thus obtained show that
the dynamics of the implemented model is most effective when there is
cooperation between the agents, due to the learning process that occurs
from the actions and interactions among them.

Keywords: bioinspired multi-agent system, generalized metaheuristics,
optimization

1 Introduction

Due to the growing complexity of optimization problems, the issue of metaheuris-
tics/heuristics hybridization has attracted much attention [2,4,15,18,20,21,24].
These algorithms consist in combining different strategies to better explore the
search space and encompass constructive methods, local search strategies, local
optima escaping strategies and population-based search. A major difficulty of
using these combinations of strategies is that they must be carefully designed,

178

which requires a good expertise and knowledge of the problem to be solved
[22]. An alternative approach is to dynamically combine different metaheuristics
through systems composed of autonomous agents that interact, compete and/or
collaborate in the search for better solutions [5,12].

Milano [16] proposed a MultiAGent Metaheuristic Architecture (MAGMA).
In this architecture, metaheuristics can be seen as a process resulting from the
interactions among different kinds of agents organized in a four-layered concep-
tual structure. The first three levels are composed of one or more agents, whereas
the fourth performs the coordination function of the lower levels. At each level,
there are one or more agents: on the first level agents build solutions, on the sec-
ond level agents improve solutions and on the third level agents provide the high
level strategy. The authors showed that a simple hybrid algorithm, called guided
restart ILS, can be easily conceived as a combination of existing components in
the architecture.

Fernandes and collaborators [7] proposed the Multi-agent Architecture for
Metaheuristics (MAM) as a flexible framework to solve different optimization
problems without the need of rewriting the algorithms from scratch. In this
architecture, each metaheuristic is fully encapsulated in just one agent. The
interaction between these agents is indirect, in the sense that an agent does not
know any of the other agents, but the coordinator agent. This architecture has
been applied to the Vehicle Routing Problem with Time Windows (VRPTW).
One of the drawbacks of this architecture is the dependency that any agent has
on the coordinator agent, i.e., the agents are not autonomous.

Xie and Liu [23] present the multiagent optimization system (MAOS) for
solving the traveling salesman problem (TSP). This system is inspired by nature
and supports cooperative search by the self-organization of a group of compact
agents situated in an environment with public knowledge sharing. In this archi-
tecture, the environment is responsible for providing all knowledge of agents to
other agents by means of an interaction center. The environment is also respon-
sible for starting and stopping agents when, for example, a solution is found.

Jin and collaborators [11] modelled a full architecture of agents that cooper-
ate with each other in order to find good solutions for the Capacitated Vehicle
Routing Problem. The cooperation among agents occurs asynchronously and
through a pool where solutions are placed and/or fetched by agents. Also, the
architecture uses parallel programming resources for execution in a distributed
way. However, this architecture was proposed and modelled for a specific problem
and is not flexible with regard the inclusion of new heuristic techniques.

Aydin [1] developed a multi-agent architecture for solving the Multidimen-
sional Knapsack Problem. The architecture was structured to receive only two
metaheuristics: Simulated Annealing (SA) and Particle Swarm Optimization
(PSO). Basically, this work consists of a hybrid technique where the SA al-
gorithm provides solutions to PSO algorithm, which in turn is used to generate
solutions to the Multidimensional Knapsack Problem.

However, these aforementioned architectures do not seem to be as generic
as claimed by the authors since the addition of new metaheuristics and/or the

179

introduction of new problems requires major interventions in the architecture.
On the other hand, these frameworks exhibit a high dependency on a control-
ling agent and therefore can not be seen as an autonomous multi-agent system
because any unavailability of that particular agent may interrupt the execution
of the system as a whole.

In order to circumvent these obstacles, an alternative approach to the prob-
lem of metaheuristics hybridization is proposed. We designed several generalized
metaheuristics, local and population-based, to be applied to any optimization
problem with any type of representation, encapsulated in an autonomous agent.
These algorithms are components of a new multi-agent architecture called Bio-
Inspired Multi-Agent System for Combinatorial Optimization (Bimasco). This
system uses artificial life as an inspiring metaphor and applies it to build au-
tonomous agents that cooperate to solve a large class of optimization problems.
In this case, the artificial world represents the search space of a certain problem,
which is populated by a set of feasible solutions of the problem, grouped into
inanimate entities, called regions. Similarly, the world is inhabited by animated
entities called agents that encapsulate the metaheuristics. In this context, Bi-
masco models the dynamics of interactions among agents as well as among agents
and regions as a self-organized discrete dynamical system. Thus, agents concur-
rently cooperate with each other, to achieve the best solution to the optimization
problem. In this kind of dynamically hybridization metaheuristic system, the
best solution emerges from the asynchronous interaction between agents, as will
be shown, and is tuned by a set of system parameters. Each set of parameters
can be viewed as a different kind of hybridization.

This paper is organized as follows. In Section 2 we present the modelling and
principal features of the Bimasco architecture. Section 3 shows the computational
experiments performed using two different classes of optimization problems from
the literature, including one problem involving a function, which is usually used
as benchmark for continuous optimization methods and the knapsack problem
[8]. Finally, Section 4 concludes the paper and presents some relevant extensions
of this work.

2 Bimasco architecture

Bimasco architecture presents a mathematical model of an artificial world. This
artificial world is composed of three main structures: Agent, Region and Envi-
ronment. The solutions for optimization problems are present in these structures.
Figure 1 illustrates the entities present in the artificial world Bimasco architec-
ture.

Considering optimization problems, the environment structure represents the
whole artificial world and can be described as an abstract space S consisting of
feasible solutions of a given problem where different autonomous entities coexist.
Therefore, in this environment, or search space, there are a number of inanimate
entities called regions (R). A region R is a non-empty subset of the search space
assembled according to some criterion.

180

Search Space

st+1,2

st+1,1
1

2

k
agent k located in the solution
st,k at time t
viable solutions already ex-
plored of the search space
solution not yet explored of the
search space
V (st,k): neighborhood solu-
tions of the agent k at time t
large region in which the solu-
tion st+1,k will be inserted after
its exploitation
jump in the search space of so-
lutions given by the agent k
step in the search space of so-
lutions given by the agent k

region

1

Fig. 1. Representation of the artificial world with some elements: agent, regions and
solutions

Given k-regions represented by Rk, we have:

k⋂

i=1

Ri = Ø and

k⋃

i=1

Ri = S, (1)

i.e., a solution s ∈ S belongs to a specific region and the union of all the k-regions
should necessarily result in the whole search space of the problem. Thus, the
aim of the implementation of regions is to build a system in which the solutions
could be grouped according to certain common characteristics. This approach
contributes to information exchange among entities in the architecture.

Regions are dynamic and can perform the following types of operations:
expansion, contraction, fusion and fission. These operations can be triggered
by interactions with other entities or by their own internal dynamics. Fission
operation occurs, for example, by means of an internal analysis. Thus, the region
comprises its own solutions and performs a calculation of the variance of the
objective function values of them. If the variance is greater than a preset limit
or value, the region will be divided into three other regions, as can be seen in
Figure 2. Otherwise, if two regions identify certain similarity in their solutions,
they can be merged into a single region. The union or fusion between two regions
is based on an analysis of covariance between the distributions corresponding
to the values of the objective function for the set of solutions of each region
analysed. If the result of this analysis is lower than a fusion threshold, then a
merging operation will be carried out between both regions.

Animated objects in this metaphor of artificial life are autonomous software
agents living in this artificial world. These agents remain adapted to their envi-
ronment through their actions and interactions with other entities. Furthermore,
they are provided with motor skills that enable them to get around their envi-
ronment. At each instant of time t, the agent k is located in a point st,k, i.e., a
solution of the search space of the problem. Note that the search space is discrete
and the agent moves from one solution to another.

181

R3

µ µ -  µ + 

O
b

je
ct

iv
e

 F
u

n
ct

io
n

R1

R2

Fig. 2. Region fission strategy based on variance

Figure 1 shows how the agents move in the search space. Basically, agents
can perform two types of movements, step and jump. In step movement, for
example, Agent 1 which is located in the solution st,1 in time t, steps toward an
neighbour solution, i.e., st+1,1 ∈ V (st,1). In the jump movement, in turn, Agent
2, which is located in st,2 in time t, takes a jump toward a solution out of its
neighbourhood, i.e., st+1,2 /∈ V (st,2).

An agent incorporates a heuristic/metaheuristic and the environment is the
problem to be solved. The world may have a different set of species of co-evolving
creatures. A solution of a different optimization problem basically involves the
consideration of a new artificial world. Three different types of agents have been
implemented in the architecture:

– Constructor - contains a constructive metaheuristic algorithm for generat-
ing initial solutions. For example, GRASP (Greedy Randomized Adaptive
Search Procedure) [6].

– Non-Populational - contains a metaheuristic algorithm for generating single
solutions. In addition, these agents can receive an initial solution from other
agents. For example, ILS (Iterated Local Search) [14] and SA (Simulated
Annealing) [13].

– Populational - contains a metaheuristic algorithm for generating a set of
solutions. Furthermore, these agents can receive a set of initial solutions
from other agents. For example, GA (Genetic Algorithm) [10].

Constructor agents are independent and generate on demand solutions of
other agents. On the other hand, the other two types of agents are not construc-
tors and, therefore, they require one or more initial solutions to execute and
generate their own solutions. Thus, non-constructors agents request solutions
from other agents and/or regions. However, in some cases, agents can request

182

partial solutions from agents that are still in the creation process of their own so-
lutions, thus promoting diversity. Thus, Bimasco is an environment which allows
interaction between agents and regions. These interactions occur through stim-
uli exchange, allowing that the solutions generated by the agents are classified
and shared by all of them. Agents communicate among themselves and with re-
gions through stimuli exchange that occurs in an entity called Environmental
Stimuli Pool.

The stimuli exchanged between the artificial beings (Agent or Region) of
the environment are called Environmental Stimuli. There are many types
of stimuli and each one corresponds to a particular action performed by the
artificial being. The types of stimuli are described below:

– Acknowledge - stimulus sent to all entities of the artificial world when a
new entity is created.

– RequestSolution - stimulus sent by the agent whenever it requests solu-
tions from other agents or regions. This stimulus can be sent in broadcast
(to all entities) or specifically to a target entity.

– SendSolution - stimulus sent in response to a stimulus type Request-
Solution. SendSolution stimulus sends one solution or a set of solutions
requested. This type of stimulus is always sent to a specific target, that is,
to entities which requested the solution.

– MergeRequest - stimulus sent from one region to another requesting a
merging.

– MergeAnswer - stimulus sent from one region to another in response to a
MergeRequest stimulus. The target region receives a stimulus of Merg-
eRequest type and evaluates the possibility to merge. If possible, the region
sends a response stimulus authorizing the completion of the merging.

3 Experimental results

Computational experiments were performed using different classes of optimiza-
tion problems, including one problem involving a function, which is usually used
as benchmark for continuous optimization methods, and one combinatorial op-
timization problem, the multidimensional 0-1 knapsack problem [8]. For each
of these problems, experiments were performed in two different ways, with and
without the possibility of cooperation among agents. Throughout the experi-
mental phase, specific combinations of the following metaheuristic agents were
used: GRASP, ILS, SA, VNS and GA.

To run an optimization problem in Bimasco we used two parameter files.
The first corresponds to the instance of the problem and should contain the
information necessary to define the problem. The other file is related to the
architecture configuration parameters, for agents and metaheuristics. The ar-
chitecture configuration consists of the following parameters: Simulation Name;
Experiment Description, Simulated Problem, Fission and Fusion Values of the
regions, Instance of the Problem. The agent configuration, in turn, consists of

183

the following parameters: Number of agents, Agent Name, Life Time and Type
of Metaheuristic.

Furthermore, metaheuristics to be executed in Bimasco architecture may also
require the setup of their solution modifiers. Modifiers are basic implementations
of methods that modify or manipulate one or more solutions and that can be
shared by different metaheuristics [19]. Some of these parameters were defined
in a similar way for all experiments.

The metaheuristics GRASP, ILS, SA and VNS use a Local Search solution
modifier in common, which can be performed in three different ways: Random
Search (RS), First Improvement Local Search and Best Neighbour. GRASP also
uses the solution modifier List of Candidates of the type Step and Position. ILS
uses the Perturbation modifier of four different ways: Random, Position, Re-
allocation and Mixed. GA, in turn, uses two modifiers: Mutation and Crossover.
The function of the solution modifier mutation in the genetic algorithm is similar
to the function of the Perturbation modifier of the ILS and therefore it also
uses the aforementioned techniques. The metaheuristic VNS uses Neighbor-
hood modifier which can be performed in two ways: Position and Reallocation.
Finally, the metaheuristic SA uses the Temperature modifier with the Classical
Method and By Iteration.

Metaheuristics implemented in Bimasco have four run-stopping criteria: max-
imum number of iterations, maximum number of iterations without improve-
ment, runtime and value of the objective function. Each agent can use one cri-
terion or any combination of these criteria. All experiments performed in this
work were carried out by using the criterion of maximum number of iterations.

3.1 Experiment 1 - XinSheYang03 function

The XinSheYang03 function is a benchmark widely used in optimization, par-
ticularly when it is desired to compare the performance of different algorithms
[9].

Equation (2) defines the XinSheYang03 function while equation (3) shows
the domain of the variables of the problem and the β and m values. The global
minimum of this function, obtained analytically, occurs in x1 = 0 and x2 = 0,
for a value of f(x) = −1. Figure 3 illustrates graphically this function.

f(x) = e

−
n∑

i=1

(xi/β)2m

− 2e

−
n∑

i=1

(xi)
2

n∏

i=1

cos2(xi) (2)

xi ∈ [−20, 20], β = 15, m = 3 (3)

This experiment aims at evaluating the performance of the architecture for a
continuous optimization problem. The architecture was executed with 12 agents
with and without cooperation in 30 runs of 15 minutes each. The agents used
were: 4 GRASP, 4 ILS and 4 GA. Table 1 shows the empirically established
parametrization of the metaheuristic agents used in this experiment.

184

Fig. 3. XinSheYang03 function

Table 1. Metaheuristics Parameters - XinSheYang03 Function

Number of

Agents
Metaheuristics Solution modifers Parameter values

Local Search: Best Neighbour % of Randomness= 0.5

List of Candidates: Step Nº of Iterations = 10

Local Search: Random Perturbation Level = 7

Perturbation: Random Nº of Iterations = 200

Local Search: Best Neighbour Perturbation Level = 10

Perturbation: Position Nº of Iterations = 100

Number of Parents = 2

Crossover: Linear Combination Nº of Iterations = 100

Mutation: Random Population Size = 30

Mutation Rate = 0.2

Crossover Rate = 0.7

Number of Parents = 2

Crossover: Linear Combination No of Iterations = 200

Mutation: Position Population Size = 20

Mutation Rate = 0.1

Crossover Rate = 0.8

2 GA

2 GA

ILS

GRASP4

ILS2

2

The results obtained are summarized in Table 2 and show the average values
over 30 runs of the architecture with and without cooperation between agents.

185

As can be seen, the average of the values of the objective function obtained with
the cooperation in all executions, indicates that the system converges toward
a value closer to the optimal compared to the system without the cooperation.
Furthermore, one can observe that with cooperation, the system converged to
the optimum value of the function in 73.33% of the executions, while in the
experiment without cooperation, the system did not reach the optimal value in
any of the executions.

Table 2. Experiment 1: XinSheYang03 Function

4 GRASP + 4 ILS + 4 GA

Results with coop. without coop.

Best solution -1.0000 -0.9907
Standard Deviation 9.9889E-5 5.7999E-2
Average of the solutions -0.9999 -0.9508

Best solution agent ILS ILS
% of global optimal solutions found 73.33 0

Exact Result -1

In order to confirm that cooperation contributes for searching better solutions
to optimization problems, two techniques of statistical analysis, box plot and
ANOVA, were used.

Box plot is a nonparametric test that shows variation in samples of a statis-
tical population without making any assumptions of the underlying statistical
distribution. The spaces between the various parts of the box indicate the degree
of dispersion and asymmetry in the data [17]. This method is useful to compare
different sets of data regarding their homogeneity and trends. Thus, the results
of the box plot obtained for a function minimization problem (XinSheYang03)
can be seen in Figure 4. The x-axis represents the two operating modes of the
architecture, i.e., with and without cooperation. The y-axis, in turn, represents
the best value of the objective function.

Figure 4 shows that the results with cooperation between the agents were
more consistent, since the degree of dispersion was lower than that of the result
obtained without cooperation. However, the results of the box plot analysis do
not provide enough statistical evidence that there might be a significant dif-
ference between the data series, since the boxes shown in Figure 4 exhibit an
overlapping between them. Accordingly, after verified the premises of normal-
ity, randomness and homoscedasticity of the data set an analysis of variance
(ANOVA) [17] was applied to the results found by the architecture to Xin-
SheYang03 function.

Table 3 presents the results of ANOVA performed to XinSheYang03 function.
ANOVA detects with a significance of 5% that there are differences between
the averages in the data series. This statement indicates that with cooperation
between agents the result of the minimization problem of the XinSheYang03
function is improved. The guarantee of this test lies in the analysis of Table 3

186

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

With cooperation Without cooperation

ZinSheYang03 Function

O
bj

ec
tiv

e
fu

nc
tio

n

Fig. 4. Box Plot - XinSheYang03 function

since the value of P-value of 2.0313E-5 is lower than α = 0.05, value adopted
for the test. Therefore, there is statistical evidence, with a confidence interval of
95%, that cooperation between agents enhances significantly the exploration of
the search space of this type of optimization problem.

Table 3. ANOVA - XinSheYang03 function

Source SS df MS F Prob>F

Columns 0.03622 1 0.03622 21.53 2.0313E-5
Error 0.09755 58 0.00168
Total 0.13377 59

3.2 Experiment 2 - Knapsack Problem

The multidimensional 0-1 knapsack problem [8] is a variation of 0-1 knapsack
problem. It is considered as a multidimensional problem because each object has
a set of weights (features) that must meet the capabilities (restrictions) of the
knapsack. Thus, if one or more weights of an object do not meet their respective
capacity in the knapsack, then the object should not be part of the solution.

The instances used in the tests were taken from the file named mknap1
available in [3]. The architecture was executed with 16 agents with and without
cooperation in 30 runs of 60 minutes each. The agents used were: 4 GRASP,
4 ILS, 4 SA and 4 GA. Table 4 shows the parametrization (also empirically
established) of the metaheuristic agents used in this experiment.

The results of the average values obtained over 30 runs of the architecture
with and without cooperation between agents are summarized in Table 5. As can

187

Table 4. Metaheuristics Parameters - Knapsack Problem

Number of

Agents
Metaheuristics Solution modifers Parameter values

Local Search: Random % of Randomness= 0.9

List of Candidates: Position Nº of Iterations = 4000

Local Search: Best Neighbour Perturbation Level = 10

Perturbation: Position Nº of Iterations = 300

Local Search: First Improvement Perturbation Level = 15

Perturbation: Reallocation Nº of Iterations = 3000

Local Search: Random % of Randomness= 0.9

Perturbation: Classical Method Nº of Iterations = 2500

Local Search: Best Neighbour % of Randomness= 0.7

Perturbation: Classical Method Nº of Iterations = 2500

Number of Parents = 2

Crossover: Linear Combination Nº of Iterations = 3000

Mutation: Reallocation Population Size = 100

Mutation Rate = 0.1

Crossover Rate = 0.8

Number of Parents = 2

Crossover: Linear Combination No of Iterations = 3000

Mutation: Mixed Population Size = 80

Mutation Rate = 0.25

Crossover Rate = 0.7

2

2 GA

SA

2 GA

2 SA

ILS

GRASP4

ILS2

2

be observed, the average of the values of the objective function obtained with
the cooperation in all executions, indicates that the system converges toward a
value closer to the optimum compared to the system without the cooperation.
Furthermore, one can observe that with cooperation, the system converged to the
optimal value of the function in 16.67% of the executions, while in the experiment
without cooperation, the system did not reach the optimal value in any of the
executions.

Table 5. Experiment 2: knapsack Problem

4 GRASP + 4 ILS + 4 SA + 4 GA

Results with coop without coop.

Best solution 16537 16521
Standard Deviation 12.3615 28.7419
Average of the solutions 16518.2333 16471.8000

Best solution agent SA ILS
% of global optimal solutions found 16.67 0

Literature Result 16537

188

Following the procedure carried out in the previous experiment and to con-
firm that cooperation contributes effectively for searching better solutions to op-
timization problems, the techniques of statistical analysis, box plot and ANOVA
were also applied in this experiment.

Thus, the box plots of architecture with and without cooperation were ini-
tially generated, as shown in Figure 5. In this figure, it can be seen that for
this maximization problem (knapsack), the results with cooperation were more
consistent, since its degree of dispersion was lower than that of the simulation
without cooperation. In addition, it is clear that there is a significant statistical
difference between the data series, since there was not overlapping of the boxes.

1.642

1.644

1.646

1.648

1.65

1.652

1.654
x 10

4

With cooperation Without cooperation

Knapsack Problem

O
bj

ec
tiv

e
fu

nc
tio

n

Fig. 5. Box Plot - Knapsack problem

In order to confirm this hypothesis, ANOVA was also applied to the results
found. The analysis suggests that there are differences in the use of cooperation
between agents due to the fact that P-Value = 3.7285E-11 was lower than α =
0.05 (Table 6). ANOVA shows that cooperation amongst agents improves the
quality of results of the Bimasco architecture for searching better solutions to
optimization problems with a confidence interval of 95%.

Table 6. ANOVA - Knapsack Problem

Source SS df MS F Prob>F

Columns 32340.8 1 32340.8 66.08 3.7285E-11
Error 28388.2 58 489.5
Total 60729 59

189

4 Conclusion

This work proposes a new architecture named Bimasco that consists of an bioin-
spired multi-agent autonomous system for solving optimization problems of dif-
ferent classes. This system models the dynamics of interactions among agents
and regions, so that it operates as a self-organizing discrete dynamical system.

This work proposes two preliminary computational experiments of different
classes, including one problem involving an analytical function and the knapsack
problem. The results show that the dynamics of the implemented model is most
effective when there is cooperation between the agents. Cooperation creates a
wide range of solutions and thereby increases the likelihood of finding good solu-
tions to various classes of optimization problems. From the experiments, it was
observed that cooperation in a multi-player environment for solving optimiza-
tion problems, can make the system more efficient and effective in exploring the
search space of the problem. Consequently, in order to validate our conclusions
further experiments should be carried out on a wider range of problems, such
as, a large set of benchmark continuous functions and a large set of knapsack
benchmark problems.

Finally, the architecture is currently being extended in order to solve multi-
objective problems. In addition, new generalized metaheuristic agents, construc-
tive methods, local search strategies and population-based search are being im-
plemented in the architecture, aiming at increasing the ”biodiversity” of agents,
thereby improving the quality of the solutions obtained by the system.

Acknowledgments

The authors thank the support of CAPES-Brazil under Procs. BEX 7354/14-2,
CNPq-Brazil, FAPEMIG and CEFET-MG.

References

1. Aydin, M.E.: Collaboration of heterogeneous metaheuristic agents. In: Proceed-
ings... pp. 540–545. International Conference on Digital Information Management
(ICDIM), IEEE, Thunder Bay, Canada (2010)

2. Barbulescu, L., Watson, J., Whitley, L.D.: Dynamic representations and escap-
ing local optima: Improving genetic algorithms and local search. In: Proceedings
of the Seventeenth National Conference on Artificial Intelligence, July 30 - Au-
gust 3, 2000, Austin, Texas, USA. pp. 879–884. AAAI Press, California (2000),
http://www.aaai.org/Library/AAAI/2000/aaai00-135.php

3. Beasley, J.E.: Or-library: Multidimensional knapsack problem (1990), available at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html

4. Crain, T., Bishop, R.H., Fowler, W., Rock, K.: Interplanetary flyby mission op-
timization using a hybrid global-local search method. Journal of Spacecraft and
Rockets 37(4), 468–474 (2000)

5. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. Computational
Intelligence Magazine, IEEE 1(4), 28–39 (2006)

190

6. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedure. Journal
of Global Optimization 6(2), 109–133 (1995)

7. Fernandes, F., de Souza, S., Silva, M., Borges, H., Ribeiro, F.: A multiagent archi-
tecture for solving combinatorial optimization problems through metaheuristics.
In: Proceedings of the IEEE International Conference on Systems, Man and Cy-
bernetics, 2009. SMC 2009. pp. 3071–3076 (Oct 2009)

8. Fréville, A.: The multidimensional 0–1 knapsack problem: An overview. European
Journal of Operational Research 155(1), 1–21 (2004)

9. Gavana, A.: Global optimization test functions index (2013), available at
http://infinity77.net/global optimization/test functions.htm

10. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms.
ACM SIGART Bulletin (63), 49–49 (1977)

11. Jin, J., Crainic, T.G., Løkketangen, A.: A cooperative parallel metaheuristic for
the capacitated vehicle routing problem. Computers & Operations Research 44(1),
33–41 (2014)

12. Johnson, S.: Emergence: The connected lives of ants, brains, cities, and software.
Simon and Schuster, Nova York, NY, 1 edn. (2002)

13. Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. Jour-
nal of Statistical Physics 34(5-6), 975–986 (1984)

14. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. Science Kluwer
57, 321–353 (2002)

15. Løvbjerg, M., Rasmussen, T.: Hybrid particle swarm optimiser with breeding and
subpopulations. In: Proceedings of the third Genetic and Evolutionary Computa-
tion Conference (GECCO-2001) (2001)

16. Milano, M., Roli, A.: Magma: a multiagent architecture for metaheuristics. IEEE
Transactions on Systems, Man, and Cybernetics 34(2), 925–941 (2004)

17. Montgomery, D.C.: Design and analysis of experiments. John Wiley & Sons (2008)
18. Preux, P., Talbi, E.G.: Towards hybrid evolutionary algorithms. International

Transactions in Operational Research 6(6), 557–570 (1999)
19. de Souza, D.: Generalisation of metaheuristic software agents. Master’s thesis, Belo

Horizonte (2014), http://www.lsi.cefetmg.br/Bimasco
20. Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–

564 (2002)
21. Vicini, A., Quagliarella, D.: Airfoil and wing design through hybrid optimization

strategies. AIAA Journal 37(5), 634–641 (1999)
22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation 1(1), 67–82 (1997)
23. Xie, X.F., Liu, J.: Multiagent optimization system for solving the traveling sales-

man problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics 39(2),
489–502 (2009)

24. Xu, P.: A hybrid global optimization method: the multi-dimensional case. Journal
of Computational and Applied Mathematics 155(2), 423–446 (2003)

191

192

Novelty-driven Particle Swarm Optimization

Diana F. Galvao1 ?, Joel Lehman2, and Paulo Urbano1

1 University of Lisboa, Faculty of Sciences, BioISI Biosystems and Integrative
Sciences Institute, Campo Grande, Lisboa, Portugal

fc37298@alunos.fc.ul.pt,pub@di.fc.ul.pt
2 IT University of Copenhagen lehman.154@gmail.com

Abstract. Particle Swarm Optimization (PSO) is a well-known popula-
tion-based optimization algorithm. Most often it is applied to optimize
objective-based fitness functions that reward progress towards a desired
objective or behavior. As a result, search increasingly focuses on higher-
fitness areas. However, in problems with many local optima, such focus
often leads to premature convergence that precludes reaching the in-
tended objective. To remedy this problem in certain types of domains,
this paper introduces Novelty-driven Particle Swarm Optimization (NdPSO),
which is motivated by the novelty search algorithm in evolutionary com-
putation. In this method particles are driven only towards instances sig-
nificantly different from those found before. By ignoring the objective
this way, NdPSO can circumvent the problem of deceptive local optima.
Because novelty search has previously shown potential for solving tasks
in genetic programming, this paper implements NdPSO as an extension
of the grammatical swarm method, which combines PSO with genetic
programming. The resulting NdPSO implementation is tested in three
different domains representative of those in which it might provide ad-
vantage over objective-driven PSO. That is, deceptive domains in which
it is easy to derive a meaningful high-level description of novel behavior.
In each of the tested domains NdPSO outperforms both objective-based
PSO and random-search, demonstrating its promise as a tool for solving
deceptive problems.

Keywords: Particle Swarm Optimization, Novelty Search, Grammati-
cal Evolution, Grammatical Swarm, Deceptive problems

1 Introduction

Particle Swarm Optimization (PSO) is a biologically-inspired population-based
optimization algorithm [1]. Although PSO is a popular and effective algorithm,
like other population-based methods it is susceptible to converge prematurely
to local optima when applied to complex or deceptive problems [2, 3]. Most ap-
plications of PSO optimize an objective-based fitness function which estimates
the progress to the desired outcome, e.g. minimizing squared error or heuristic

? corresponding author

193

2 Novelty-driven Particle Swarm Optimization

similarity to a goal behavior. Guiding the search directly towards the ultimate
goal causes increasing focus on higher-fitness areas at the expense of lower-fitness
ones, reducing the overall exploration of the search space. In simple problems
this focus aids efficiency, but can be harmful in deceptive ones. That is, the
pervasiveness of local optima may render the objective accessible only by sig-
nificant travel through areas with low objective-based fitness. By pruning such
areas from consideration, an objective-driven algorithm may be unlikely to reach
the desired objective.

Because local optima are a well-known issue in search, many researchers
have proposed variations of PSO to circumvent premature convergence [4, 5].
While such variations may outperform the standard PSO algorithm in domains
with limited deception, because they remain guided by heuristic distance to
the objective, they are still vulnerable to premature convergence if the objective
function is sufficiently deceptive. In this way, there is a clear relationship between
objective-based search and premature convergence. Thus to avoid premature
convergence in very deceptive domains it may paradoxically be necessary to
guide search without considering the ultimate objective.

Novelty search is an evolutionary algorithm (EA) which takes this radical
step [6], and has successfully been applied in neuroevolution [6, 7] and genetic
programming [8,9]. The core insight motivating novelty search is that novelty, i.e.
demonstrating qualitative difference from previously encountered individuals, is
a valuable source of information. Thus instead of guiding search by estimated
distance to the search’s objective, novelty search is instead driven towards in-
stances significantly different from those found before. By ignoring the objective
completely, novelty search circumvents the problem of deception inherent in
objective-based algorithms. Of course, without any pressure to optimize towards
the objective, intuitively a raw search for novelty make seem unlikely to be effec-
tive at solving problems. Yet if measures of novelty are constructed in ways that
capture important dimensions of behavior in the domain, the surprising result
is a practical algorithm for solving deceptive problems [6, 8, 10]. The insight is
that often demonstrating novelty requires exploiting meaningful regularities in
a domain.

A key motivation for this paper is that because PSO is also susceptible to de-
ception, integrating a drive towards novelty might sometimes also benefit the ef-
fectiveness of PSO. This paper thus introduces Novelty-driven PSO (NdPSO), a
tool to combat the pathology of premature convergence in PSO. Because novelty
search has shown prior promise in combination with genetic programming [10],
here NdPSO is implemented as an extension of the Grammatical Swarm (GS)
method [11], which is a PSO-based version of a GP technique called Grammatical
Evolution (GE). This implementation is thus called novelty-driven Grammatical
Swarm (NdGS).

Experiments in this paper test NdGS in three domains representative of those
for which the algorithm might be most appropriate. Such problems should be
deceptive (otherwise an objective-based search method is likely to be more ef-
fective) and provide an intuitive way to characterize a space of behaviors that

194

Novelty-driven Particle Swarm Optimization 3

captures important aspects of the domain (otherwise it is difficult to quantify
novelty). The first domain requires evolving a hidden sequence obscured by a
deceptive fitness function. The other domains are reinforcement learning bench-
marks imported from genetic programming that are also known to be deceptive.
The experiments compare the performance of NdGS, objective-driven GS and
random search. Across the tested domains NdPSO performs the best, highlight-
ing its potential for solving deceptive problems.

2 Background

The next sections first describe the PSO algorithm used in the experiments and
the Grammatical Swarm extension that enables PSO to evolve programs. After
a description of novelty search is given.

2.1 Particle Swarm Optimization

This section reviews the main concepts of PSO, a population-based optimization
algorithm inspired by schooling and flocking behaviors of animals, introduced by
Kennedy and Eberhard [12].

In PSO, the population (or swarm) is composed of particles moving through
a Rd search space, that optimize a fitness function with the following domain
f : Rd → R, with d representing the dimensionality of the search space.

Each particle i ∈(1, 2, 3, ..., N) is associated with two d-dimensional vectors,
one recording its position x and the other its velocity v.

Particles also store a summary of their previous experiences in a simple mem-
ory component. In particular, the particle records the position of the maximum
fitness value it has encountered, called its personal-best or pbest. Particles also
share information with each other, and record the point in the search space
where the overall best fitness has been obtained among all particles. This point,
which a particle may not have visited (but has heard from another particle) is
called its global-best gbest.

These components help balance exploiting promising areas with exploring
more broadly [13]. In practice, communication between particles is often re-
stricted by use of a neighborhood topology, meaning that a particle’s gbest may
be calculated from the best search locations recorded by its neighboring par-
ticles [14]. The most commonly chosen topology is a fully-connected neighbor-
hood [14]. In such a topology all particles directly communicate with all other
particles. Thus information propagates quickly, which can cause fast conver-
gence. In the Ring topology, particles communicate only with their immediate
neighbors in a ring structure, causing information to flow more slowly than in the
Fully-connected topology. The result is that some groups of particles can con-
verge to one point in the search space, while other groups can converge to others.
The Von Neumann topology offers an intermediate speed of information flow.
In this topology, each particle is assigned a fixed location on a two-dimensional

195

4 Novelty-driven Particle Swarm Optimization

toroidal neighborhood grid, and is neighbor with the four particles one unit away
in each of the cardinal directions.

At each time step t, the velocity of each particle is adjusted as a function of
its position, previous velocity, pbest and gbest. In particular, the ith particle’s
velocity is updated as follows:

vi(t+ 1) = ω.vi(t) + ϕ1.r1(pbesti(t)− xi(t)) + ϕ2.r2(gbest(t)− xi(t)) , (1)

where ω is a parameter specifying the particle’s inertia, which determines how
strongly the particle maintains its previous velocity (i.e. the higher the inertia,
the slower that velocity changes). The experiments apply a dynamic inertia
value, which is initialized to 0.9 and during search decreases linearly to 0.4 using
Equation 3. The real numbers r1 and r2 are chosen randomly within an interval
(typically between 0 and 1), and ϕ1 and ϕ2 are the acceleration coefficients.
It is also common to restrict the maximum velocity (vmax ∈ [−vmax, vmax]) to
prevent instability. Note that the particle’s maximum velocity may be static, as
in our experiments, or calculated dynamically [15]. The particle’s new position
is calculated according to Equation 2.

xi(t+ 1) = xi(t) + vi(t+ 1) . (2) ω = ωmax −
ωmin

maxIterations
∗NumIteration , (3)

In this way, the particles are driven through the space towards locally optimal
points. Because they are attracted both to their own best position and the
overall best position, over time a consensus may emerge as knowledge of the most
promising point point in the search space spreads through all neighborhoods.
This process will often result in convergence.

Barebones PSO The Barebones PSO algorithm was developed by Kennedy
[5], and it is a variant of the standard PSO algorithm designed to mitigate
premature convergence. The main idea is to minimize the degree to which good
performance depends upon well-tuned settings of parameters like ω, ϕ1 and ϕ2.
While other PSO variations have similar motivation, Barebones PSO completely
eliminates these parameters from the algorithm. The main difference from the
standard PSO algorithm is a simplified position update (Equation 4) where
σ = |pbestij(t)− gbestj(t)|.

xij(t+ 1) ∼ N
(
pbestij(t) + gbestj(t)

2
, σ

)
, (4)

As shown above, the position of each particle is iteratively sampled from the
Gaussian distribution. Barebones PSO favors exploration in the earlier stages
of the simulation because the personal best positions will at first be far from
the global best one, leading to sampling from a probability distribution with a
higher variance. As the simulation proceeds and personal bests converge to the
global best, variance will approach zero, thereby focusing on exploitation.

Barebones PSO is a popular variation of the standard PSO algorithm be-
cause it has few parameters, and because of its aim to deal with the problem of
premature convergence. Over many studies, Barebones PSO has provided better

196

Novelty-driven Particle Swarm Optimization 5

results than the standard PSO algorithm [5, 16, 17]. These factors motivate its
use as an additional comparison algorithm in the this paper’s experiments.

2.2 Grammatical Swarm

Grammatical Swarm (GS) was introduced in 2006 [11] and combines PSO with
the Grammatical Evolution (GE) mapping process. GE is an Evolutionary Al-
gorithm (EA) able to evolve computer programs in any language that can be
described in grammatical form [18]. This is possible because, instead of repre-
senting programs as parse trees, GE has a representation based on a Backus
Naur Form (BNF) grammar.

In GS, most commonly particles are given fixed-length dimensionality, which
is the approach adopted in these experiments. To map from PSO’s floating point
representation to the integer codon representation of GE, each real-valued ele-
ment of the particle’s position is rounded to the nearest integer value. This new
array of integers is then mapped through a fixed grammar into a program.

Mapping process In the GS mapping process a particle’s location in the search
space is processed to construct a program (which can then be evaluated in the
domain).

Fig. 1: GE and GS mapping process. This example is based on [11].

An example of the mapping process in GE and GS is shown in Fig. 1. Note
that an integer representation is used in this example for simplicity of under-
stating. In this example, the first codon (00001110) is converted to its decimal
value (14). From the underlying grammar, the start symbol <E> has two pos-
sible rules that can be applied. The modulus of the value of the codon with

197

6 Novelty-driven Particle Swarm Optimization

the number of alternatives determines which rule is selected (Alternative =
CodonV alue%Num.ofAlternatives)

For this example, 14 % 2 = 0, which means that the first rule, <O> <E>
<E>, is selected, i.e. the start symbol is replaced with those three non-terminal
symbols. Next, the leftmost symbol <O> and the second codon (8) are pro-
cessed in the same way. The process then iterates until no non-terminal symbols
remain. When the genotype has fewer codons than non-terminals, the genome
is “wrapped”, i.e. the algorithm continues reading again from the beginning of
the genotype. The number of times the genotype wraps is limited in practice to
avoid infinite cycles. In this case, the respective particle is marked as invalid.
Our preliminary experiments revealed that if particles are forced to be valid
(i.e. by updating a particle’s velocity until its position becomes valid), the per-
formance of all algorithms improved considerably. Therefore, all results in this
paper include this procedure.

2.3 Novelty Search

The novelty search algorithm was introduced by Lehman and Stanley in 2008 as
an alternative to objective-based optimization in evolutionary computation [6].
The key idea behind novelty search is to ignore the objective of the search, and
instead reward novel individuals, i.e. those with behaviors different from those
previously encountered in the search. The insight is that by not optimizing a
measure of progress towards the objective, novelty search is not susceptible to
premature convergence to local optima. Of course, the significant trade-off is
that the search as a whole becomes less explicitly controlled.

While novelty search may record the value of the underlying objective-based
fitness function to track whether any solutions have been discovered, this fitness
function does not guide the search. Instead novelty search applies a novelty met-
ric, which measures the novelty of an individual in comparison to other individ-
uals in the search, according to its behavior. This enables rewarding individuals
with novel behaviors, which incentivizes exploring the space of behaviors. This
exploration can often lead to discovering the desired objective of search as a side
effect.

Novelty search requires that each individual be assigned a behavior descrip-
tor, which is a vector summarizing the individual’s behavior. Thus applying
novelty search to a new domain requires that the experimenter devise a quanti-
tative characterization of behavior. For example, in a maze navigation task an
individual’s behavior descriptor can be its Cartesian coordinates at the end of
an evaluation. Because they bias the search, different behavior descriptors ap-
plied to the same domain may result in varied performance. In this way, effective
novelty search may depend upon a characterization of behavior that succinctly
captures relevant aspects of behavior in a domain.

When the behavior space is large, novelty search often benefits when an
archive of past behaviors is maintained. The idea is to prevent repeatedly cy-
cling through a series of behaviors, reflecting only a fleeting sense of novelty. By
archiving past behaviors, novelty can be measured relative to where search has

198

Novelty-driven Particle Swarm Optimization 7

been and where it currently is, thus incentivizing behaviors that are genuinely
novel. Two common archiving strategies are to add behaviors with novelty that
is higher than a threshold value, or to select individuals randomly to archive. In
the experiments presented here, all behaviors had a five percent probability of
being archived.

To calculate the novelty of an individual requires defining the distance be-
tween its behavior descriptor and that of others in the population and in the
archive. Given the behavior descriptor and the distance metric between such
descriptors, the novelty score is calculated as shown in Equation 5, where µi is
the ith nearest neighbor of x, and dist is a Euclidean distance metric.

ρ(x) =
1

k

k∑

i=0

dist(x, µi) . (5)

The novelty of each individual is the average distance of its behavior to its
k-nearest neighbors. This way, individuals in a less dense area of the behavior
space are given higher novelty scores, thus creating pressure in the search towards
further novelty.

3 Novelty-driven PSO

Algorithm 1, below, provides the pseudo-code for the novelty-driven PSO al-
gorithm. Introducing novelty search into PSO does not change the core of the
algorithm (only in the reward scheme driving search), resulting in pseudocode
that does not differ significantly from the standard PSO algorithm.

Algorithm 1 Novelty-driven PSO algorithm
1: procedure NSPSOProcedure
2: createPopulation: foreachParticle
3: setRandomPosition
4: setRandomV elocity
5: evaluatePopulation
6: setPbestCurrent
7: executeNovelty
8: setPnovelCurrent
9: end foreach
10: updateGbest
11: updateGnovel
12: loop:
13: if NotDone then foreachParticle
14: calculateV elocity
15: calculateNewPosition
16: evaluatePopulation
17: updatePbest
18: executeNovelty
19: updatePnovel
20: end foreach
21: updateGbest
22: updateGnovel

23: close;

199

8 Novelty-driven Particle Swarm Optimization

The main change to PSO is to replace the objective-based fitness function
with a novelty metric. The standard velocity update equation (Equation 1) shows
that particles are attracted by the best position they have encountered and the
overall best position. In novelty-driven PSO, the equation is the same, but the
concept of “best position” changes. That is, in novelty-driven PSO, the pbest
position is not the position where the particle obtained best fitness but the
position where it has encountered highest novelty. Similarly, the overall best
position (gbest) is the position where the maximum value of novelty has been
obtained. For this reason, these quantities are referred to as pnovel and gnovel.

One important aspect of novelty is that it is both relative and dynamic. That
is, each particle calculates its novelty with respect to other particles’ current
behaviors and past archived behaviors. In this way, a highly novel behavior
becomes less novel over time as other particles become drawn to it, and it is
added to the archive.For this reason, the tracking of the pnovel and gnovel
take this dynamism into account. In particular, the novelty of each particle’s
pnovel behavior are recalculated each iteration. If the novelty score of the current
particle position is higher than the recalculated novelty score of its pnovel than
the latter is updated. In this case, the current position will overwrite pnovel,
and the particle’s behavior will also be cached as the pnovel behavior. Gnovel
is the pnovel over all particles with the highest score. Importantly, because the
behavior vector for each pnovel is cached, no additional domain evaluations
are required for such recalculations, and they thus incur little computational
overhead.

Note that when more than one pnovel shares the the same highest novelty
score, empirically it was found to be important to conserve the current gnovel.
That is, if the current gnovel particle is one the top ranked pnovel particles, it
always is chosen to remain as the gnovel. But if the current gnovel is not among
of the tied top pnovel scores, one of the top ranked pnovel is randomly chosen.
That is, gnovel changes only when there a pnovel with a strictly higher novelty
score.

4 Experiments

The aim of these experiments is to compare the performance of the traditional
objective-driven GS method with the performance of the NdPSO algorithm pro-
posed in this paper. Recall that novelty search pursues novel behaviors, which
makes it best-suited for deceptive problems in which it is possible and intuitive
to characterize an individual’s behavior. Thus the choice of test domains re-
flects the type of problem for which the approach is likely to be appropriate.
Objective-driven GS and NdGS are tested in three domains: Mastermind, the
Santa Fe trail, and a Maze navigation problem.

All experiments have been performed in Netlogo, using a Java implemen-
tation of the GE algorithm [19] (the jGE library) and the respective Netlogo
extension [20].

200

Novelty-driven Particle Swarm Optimization 9

4.1 Mastermind

Inspired by the classic board game, in the Mastermind domain considered here
the task is to discover the correct sequence before the maximum number of
attempts is exhausted. As in O’Neill [11], four possible colors are considered,
and the correct code for the eight given positions was fixed to 3 2 1 3 1 3 2 0.
NdGS and GS both use the same grammar as in the original GS experiment
(Figure 2).

Fig. 2: BNF-Koza grammar definition for the Mastermind problem.

In this domain, objective-based fitness is scored as follows: One point is
awarded for each correctly colored pin (regardless of its position, although limited
in extent by the total number of pins in the target sequence with that color).
If all pins are in the correct position, an additional point is awarded. If the
genotype has more than eight codons, it is truncated to the first eight. The
fitness score is normalized by dividing the raw score by the maximum score
possible (fitness = score/maxScore). Note that maxScore in this experiment
is 9. By design, this problem is highly deceptive, with local optima corresponding
to all sets of correct colors in wrong positions.

In contrast to objective-based PSO, novelty-driven PSO requires a charac-
terization of behavior. In this problem two distinct characterizations were con-
sidered: behaviorMm1 - the fitness value, and a behavior inspired by the original
game: behaviorMm2 - a tuple of two integers consisting of the number of cor-
rect colors and the number of correct positions. Two things are important to
note. First, searching for novel values of objective fitness is different than sim-
ple objective-based search. That is, novelty search will be driven to accumulate
all possible fitness values, not only the largest ones. Thus the performance of
objective-driven GS and novelty-driven GS may diverge even though they are
driven by the same underlying information. Second, behaviorMm2 provides an
ideal decomposition of the domain, one which is unavailable to the objective fit-
ness function (i.e. both colors and placements are important). Thus this charac-
terization highlights the potential for injecting experimenter knowledge into the
search process, which may otherwise be complicated in objective-driven search
because of the need to reduce performance information to a single number.

4.2 Santa Fe Trail

The Santa Fe trail is a difficult and popular benchmark in both GP [21] and
GE [18].

The goal is to evolve a computer program that can efficiently guide an ar-
tificial ant to eat all pieces of food placed in the trail (Figure 3). Beginning

201

10 Novelty-driven Particle Swarm Optimization

Fig. 3: The Santa Fe Trail.

Fig. 4: BNF-O’neill grammar definition for
the Santa Fe trail.

from the upper left corner, the artificial ant can move forward in the direction
it is currently facing or turn 90 degrees to the right or left. Each action takes
one discrete unit of time to perform. The ant can perceive if the cell in front
of it contains food, an operator that executes instantaneously (i.e. it does not
consume any time). Fig.4 shows the grammar used in this domain.

For objective-driven GS, the traditional fitness function simply counts the
units of food eaten by the ant after all time has been exhausted. The standard
maximum number of steps is used in this experiment, i.e. 615.

For novelty-driven GS, two behavior descriptors are applied. A simpler de-
scriptor - behaviorSF1 - adopts the fitness function as the characterization of
behavior, as in the Mastermind domain. A more informative characterization -
behaviorSF2 - considers the amount of food eaten, with the constraint that the
eaten units must not be disconnected from other eaten units along the length of
the trail.

For example, if the ant first eats 3 food units that follow the trail, then
leaves the trail and eats one more unit in another area of the trail, its behavior
descriptor is appended with a 3 (although the ant ate in total 4 units of food),
because the last unit is not connected to any other eaten units along the true
path of the trail. However, if the ant eats 3 food units at the beginning of
the trail, goes off the trail, and collects three more units along a later part of
the trail, the score will then be 6. Additionally, this second characterization is
sampled over time to provide temporal information about the ant’s behavior. In
particular, it is sampled every 41 timesteps, resulting in a vector of length 15 by
the completion of an ant’s evaluation.

4.3 Maze navigation problem

The Medium Map domain (Figure 5) is a deceptive and discrete maze navigation
task introduced by Lehman and Stanley [22]. The goal in this domain is to find a
program that guides an agent in a grid-world domain to the goal location before
exhausting the time limit. In our experiments the time limit was set to 500 steps.
This maze is suitable for testing GS and NdGS because the placement of the
walls create deception. That is, the shortest path to the goal is blocked, meaning

202

Novelty-driven Particle Swarm Optimization 11

that to solve the task requires exploring areas that superficially appear further
from the goal.

Fig. 5: Medium Map used for the maze nav-
igation problem.

Fig. 6: BNF-Koza grammar definition for
the Medium Maze problem.

The possible actions for each agent are: turn-left, turn-right, move and the
boolean operators wall-ahead, wall-left and wall-right. Similarly to as in the Sante
Fe Trail, the turning actions respectively turn the agent 90 degrees left or right,
while the move operation causes the agent to progress forward one unit in the
direction it currently faces. All but the last three actions consume a timestep.

Defining dist as the euclidean distance of the agent from the goal location,
the fitness function for objective-based GS is calculated as fitness = 1

1+dist .
For novelty-driven GS, the behavior descriptor adopted was the coordinates

of the agent’s ending position - behaviorMP1. In this way, objective-based search
is looking for ways to get closer to the goal, while novelty search instead explores
how to reach a diversity of places within the maze.

4.4 Experimental parameters

As in O’Neill’s original GS experiments [11], the following parameter settings
were adopted in all experiments: ϕ1 = ϕ2 = 1.0, ωmax = 0.9, ωmin = 0.4 and
vij ∈ [−255, 255]. A maximum of 10 wraps was allotted for an individual to be
considered valid, and a coordinate’s value was bounded between 0 and 255, inclu-
sive. When a particle exceeds the maximum or minimum value for a particular
dimension, the value is clipped such that it lies on the extreme of that range.
The swarm consisted of 30 particles, with a search space of dimensionality 100.
Simulations ran for 1000 iterations.

Three different neighborhood topologies are tested: Fully-connected, Ring
and Von Neumann. All results reported for objective-driven GS and GS (Bare-
bones) use the Fully-connected topology which provided the best results. Inter-
estingly, with objective-driven GS the Ring and Von Neumann topologies have
effect opposite from when used in NdGS (where their use improves results sig-
nificantly).

203

12 Novelty-driven Particle Swarm Optimization

In the Santa Fe trail and in the maze navigation problem 3 nearest neighbors
were used for calculating novelty in NdGS, and 15 nearest neighbors were used
in the Mastermind problem. Because the behavior NdGS-behaviorSF2 in Santa
Fe is composed of many samples taken over an ant’s evaluation, the best result
was obtained by including the archive.

5 Results and discussion

The results presented in Table 1 are the best obtained for each algorithm in
the considered domain, over the combinations of topologies and other param-
eters described in the section above. In all problems NdPSO outperforms the
objective-based algorithms tested, both in number of solutions found and in the
best fitnesses discovered averaged over all runs. In particular, the average best
fitnesses are significantly higher for the NdPSO methods than for any of the
control algorithms (Student’s t-test; p < 0.05). Interestingly, in the Mastermind
problem, which is considered a difficult GP problem, NdPSO managed to succeed
in all runs while objective-driven GS achieved success in only 14% of runs.

Table 1: Comparison of the results obtained for Grammatical Swarm, Novelty-driven
Grammatical Swarm and Random Search averaged over 100 runs

Mean best fitness Std Deviation Median Successful runs

Mastermind
GS 0.90 0.04 0.89 14
GS (Barebones) 0.87 0.04 0.89 2
NdGS-behaviorMm1 0.92 0.05 0.89 25
NdGS-behaviorMm2 1.00 0.00 1 100
Random 0.86 0.05 0.89 0

Santa Fe Trail
GS 78.31 15.65 89 52
GS (Barebones) 74.25 16.95 88 49
NdGS-behaviorSF1 85.46 8.54 89 75
NdGS-behaviorSF2 87.89 6.52 89 78
Random 75.81 15.74 88 40

Maze problem
GS 0.43 0.36 0.24 27
GS (Barebones) 0.50 0.36 0.31 34
NdGS-behaviorMP1 0.68 0.38 1 58
Random 0.30 0.30 0.17 15

While every NdPSO treatment outperforms the control algorithms, it is im-
portant to note that the selection of the behavior descriptor is a significant factor.

204

Novelty-driven Particle Swarm Optimization 13

In particular, a domain-specific descriptor that integrates additional information
than the raw objective-based fitness measure led to further performance gains.
Additionally, performance of NdPSO is affected by interactions between the be-
havior characterization and whether or not an novelty archive is included. In
particular, when using behaviorSF2 in the Santa Fe Trail and the Maze naviga-
tion problem, an archive provided better results.

Despite its promise in previous work, applying objective-based Barebones GS
did not improve upon on the results of standard GS, performing worse than GS
in 2 out of 3 domains. This failure may be particular to the chosen domains, or
on the combination of the Barebones approach with GS.

A final interesting facet of the results is that there is not a singularly best
neighborhood topology over all experimental setups. As described earlier, the
best performance for objective-driven GS (with and without Barebones PSO)
resulted from the Fully-connected topology where in NdGS the Ring topology
provided substantially improved results. This result highlights a qualitative dif-
ference between an objective-driven search and a novelty-driven one; best prac-
tices for one paradigm may not directly transfer to the other.

6 Conclusion and Future Work

This paper introduced Novelty-driven PSO (NdPSO), a method that aims to
mitigate the challenge of premature convergence in traditional objective-driven
PSO. NdPSO was combined with Grammatical Swarming and tested in three do-
mains. In each domain it outperformed two objective-based control algorithms
and random search. In this way, NdPSO shows promise for solving deceptive
PSO problems and encourages further follow-up investigation. In particular, fu-
ture research will compare NdPSO to novelty-driven GE, to examine how its
performance compares to the evolutionary novelty search that inspired it.

Acknowledgments. This work was funded by FCT project EXPL/EEI-
SI/1861/2013.

References

1. Kennedy, J and Eberhart, R: Particle swarm optimization. In: 1Proceedings of IEEE
International Conference on Neural Networks, volume 4. IEEE Int (1995)

2. Peer, E. S., F. Van den Bergh, and A. P. Engelbrecht. Using neighbourhoods with
the guaranteed convergence PSO, In Swarm Intelligence Symposium, 2003. SIS’03.
Proceedings of the 2003 IEEE, pp. 235-242. IEEE (2003)

3. Ratnaweera, A., S. K. Halgamuge, and H. C. Watson, Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans.
Evol. Comput., vol. 8, no. 3, pp. 240255,(2004)

4. Vesterstrom, Jakob, and Rene Thomsen. A comparative study of differential evolu-
tion, particle swarm optimization, and evolutionary algorithms on numerical bench-
mark problems. Evolutionary Computation, 2004. CEC2004. Congress on. Vol. 2.
IEEE, (2004)

205

14 Novelty-driven Particle Swarm Optimization

5. Kennedy, J., Bare bones particle swarms. In Swarm Intelligence Symposium, 2003.
SIS03. Proceedings of the 2003 IEEE, 8087, IEEE.

6. Lehman, Joel, and Kenneth O. Stanley. Exploiting open-endedness to solve prob-
lems through the search for novelty. In Proceedings of the Eleventh International
Conference on Artificial Life (ALIFE XI), Cambridge, MA, (2008). MIT Press

7. Lehman, Joel, Kenneth O. Stanley, and Risto Miikkulainen. Effective diversity main-
tenance in deceptive domains. In Proceeding of the fifteenth annual conference on
Genetic and evolutionary computation conference, pp. 215-222. ACM, (2013)

8. Lehman, Joel, and Kenneth O. Stanley. Efficiently evolving programs through the
search for novelty. In Proceedings of the 12th annual conference on Genetic and
evolutionary computation, pp. 837-844. ACM, (2010)

9. Lehman, Joel, and Kenneth O. Stanley. Novelty search and the problem with ob-
jectives. In Genetic Programming Theory and Practice IX, pp. 37-56. Springer New
York, (2011)

10. Urbano, Paulo, and Loukas Georgiou. ”Improving grammatical evolution in santa
fe trail using novelty search.” Advances in Artificial Life, ECAL. Vol. 12. 2013.

11. ONeill, Michael, and Anthony Brabazon. ”Grammatical swarm: The generation of
programs by social programming.” Natural Computing 5.4 (2006): 443-462.

12. Kennedy, J. and Eberhart, R.,Particle swarm optimization. In Proceedings of IEEE
International Conference on Neural Networks, 4, (1995)

13. Ozcan, E. and Mohan, C.K. (1998). Analysis of a simple particle swarm optimiza-
tion system. Intelligent engineering systems through artificial neural networks, 8,
253258

14. Medina, A. J. R., Pulido, G. T., and Ramrez-Torres, J. G. (2009). A Comparative
Study of Neighborhood Topologies for Particle Swarm Optimizers. In IJCCI (pp.
152-159)

15. Ali, M. and Kaelo, P. (2008). Improved particle swarm algorithms for global opti-
mization. Applied mathematics and computation, 196, 578593

16. Omran, M., and S. Al-Sharhan. ”Barebones particle swarm methods for unsu-
pervised image classification.” Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on. IEEE, 2007.

17. Yao, Jingzheng, and Duanfeng Han. ”Improved barebones particle swarm optimiza-
tion with neighborhood search and its application on ship design.” Mathematical
Problems in Engineering 2013 (2013).

18. Ryan, Conor, J. J. Collins, and Michael O. Neill. ”Grammatical evolution: Evolv-
ing programs for an arbitrary language.” Genetic Programming. Springer Berlin
Heidelberg, 1998. 83-96.

19. Georgiou, Loukas, and William J. Teahan. ”jGE-A Java implementation of Gram-
matical Evolution.” Proceedings of the 10th WSEAS International Conference on
SYSTEMS, Vouliagmeni. Athens: WSEAS. 2006.

20. Georgiou, Loukas, and William J. Teahan. ”Grammatical evolution and the santa
fe trail problem.” Evolutionary Computation (ICEC 2010) (2010).

21. Koza, J. R. (1991). Genetic evolution and co-evolution of computer programs. In
Langton, C. T. C., Farmer, J. D., and Ras-mussen, S., editors, Artificial Life II,
volume X ofSFI Studies in the Sciences of Complexity, pages 603-629. Addison-
Wesley, Santa Fe Institute, New Mexico, USA

22. Lehman, Joel, and Kenneth O. Stanley. ”Efficiently evolving programs through
the search for novelty.” Proceedings of the 12th annual conference on Genetic and
evolutionary computation. ACM, 2010.

206

207

How a model based on P-temporal Petri Nets
can be used to study Aggregation Behavior

Fatima Debbat, Mohamed Slimane, Nicolas Monmarché, Pierre Gaucher

Computer science department, Mascara university Algeria
University François Rabelais, Tours, Laboratoire d’Informatique, France

Abstract. In animal societies, many observed collective behaviours re-
sult from self-organized processes based on local interactions among in-
dividuals. Aggregation is widespread in insect societies and can appear
in response to environmental heterogeneities or by attraction between
individuals. Understanding this process requires linking individual be-
havioural rules of insects to a choice dynamics at the colony level. In this
paper, we propose a model for the self-organized aggregation inspired by
Jeason et al. aggregation behaviour model. Specifically, we use a proba-
bilistic P-temporal Petri Nets model and analyse its performance using
simulation. The results showed that this aggregation process, based on a
small set of simple behavioural rules and interaction among individuals,
can be used by the group of agent to select collectively an aggregation
site among two identical or different shelters by estimating the size of
each shelter during the collective decision-making process.

Keywords : self-organization, aggregation, collective decision, Blattella
germanica, behavior model.

1 Introduction

Since the last years, Swarm intelligence has undergone a considerable devel-
opment. It refers generally to the study of the collective behavior of multi-
component systems that coordinate using decentralized controls and self-orga-
nization. The self-organized processes are used by insect’s society to make col-
lective decisions: for instance in foraging in bees [1], of a nest site in ants [2], or
of a shelter site in cockroaches [3]. The aggregation is one of these mechanisms;
it results from interactions between individuals that follow simple rules based
on local information, without reference to the global pattern. Aggregation is a
step toward much more complex collective behaviours because it favours inter-
actions and information exchanges among insects, leading to the emergence of
complex and functional self-organized structures. As such it plays a key role in
the evolution of cooperation in animal societies [4].

Studies about aggregation can be grouped in three different but related fields;
namely social insect studies, control theory and swarm robotics [5].

Ando et al. [6] introduced a deterministic algorithm for achieving aggregation
in a group of mobile agents with limited perception in homogeneous environ-

208

ments. Cortés et al. [7] adapted this algorithm and showed that it can be used
to achieve aggregation in arbitrarily high dimensions.

Deneubourg et al. [4] studied aggregation behavior in ants and cockroaches.
to form a bridge and cross a gap and cockroaches aggregate together in hiding
sites. In these species, individuals rest in aggregations for varying time spans.
The amount of time individuals spend in aggregations are modulated by en-
vironmental conditions and presence of other individuals. Individuals tend to
spend more time in large aggregations, providing positive feedback for growth of
aggregations. Individuals also spend more time on favorable sites, causing larger
aggregates to form on such sites.

In one of the pioneering studies, Jeanson et al. [8] investigated aggregation in
cockroach larvae, and developed a model of their behavior. The cockroaches were
reported to join and leave clusters with probabilities correlated to the sizes of the
clusters. They have demonstrated that the aggregation behaviour displayed by
the German cockroach relies on a self-organization process: for a given moving
cockroach, the larger the number of staying neighbors, the more likely the animal
is to stop and stay beside them. This leads the cockroaches to quickly aggregate
in dense clusters in a homogeneous environment. If one puts a dark shelter in
a bright arena, one will observe that cockroaches strongly aggregate under this
shelter. If two or more dark shelters are placed in the arena, a majority of the
cockroaches will aggregate under a single shelter rather than evenly spreading
among all resting sites. Garnier et al. [9] implemented this model with 20 Alice
robots to achieve aggregation in homogeneous environments.

Amé et al. [10] set the probability of leaving a shelter based on a simple
formula which makes the probability inversely proportional with the number of
neighbors in that shelter. They give a system of differential equations describing
the dynamical choice of a shelter in cockroaches. This system yields different
qualitative collective behaviors, depending on the number and size of available
shelters. Monte Carlo simulations showed that the formula is adequate for the
individuals to select one of two shelters. In a subsequent study [11], Amé et al.
developed a detailed model that took more than two shelters and the capacity
of shelters into account.

Trianni [12] argues that “aggregation is of particular interest since it stands
as a prerequisite for other forms of cooperation.” In some cases, self-organized
aggregation is aided by environmental heterogeneities, such as areas providing
shelter or thermal energy.

Correll and Martinoli [13] analysed a similar model and showed that robots
need a minimum combination of communication range and locomotion speed
in order to aggregate into a single cluster when using probabilistic aggregation
rules. They developed a probabilistic macroscopic model for aggregation. The
model kept track of the number of robots in aggregates of specific size based on
the waiting and leaving probabilities of robots and the encountering probability
of searching robots with aggregates. The authors compared the results of a sim-
ulation model with the results of the macroscopic model and showed that the
model predicts the aggregation dynamics successfully.

209

Soysal and Sahin [5] extended the controller in [8] by adding an approach
behavior as a sub step prior to the wait behavior in which they can control the
distance of a robot to its aggregate while waiting. A simulated robot which has
infrared sensors for obtaining local information and a sound sensor/emitter pair
for obtaining information from longer distances are used. Despite using a pow-
erful sensing capability, the aggregations obtained were shown to be unscalable
when the number of robots is increased.

This study supports evidence that aggregation relies on mechanisms of ampli-
fication, supported by interactions between individuals that follow simple rules
based on local information and without knowledge of the global structure. We
address self-organized aggregation behaviour of agents themselves based on P-
temporal Petri Nets and inspired by Jeanson et al model [8]. In this work, we
investigate the potential of temporal Petri nets as a design/verification tool for
self-organised systems. We show that a self-enhanced aggregation process, which
leads groups of agents to a quick and strong aggregation, can be used by a group
of agents to select collectively an aggregation site among two identical or different
shelters.

We first describe the P-temporal Petri Nets model of aggregation we have
used. We then develop an agent-based model implementing individual behavioural
rules, to explain the aggregation dynamics at the collective level.

We show that, when this aggregation behaviour is restricted to certain zones
in the environment, the agents preferentially aggregate in only one of these zones,
i.e. they collectively choose a single shelter. When these shelters are of different
sizes, the agents preferentially choose the biggest of the two, but without being
individually able to measure their size.

2 Developed Behavioral aggregation Model

To modulate the behavioral aggregation process, most of the researches have
used probabilistic models or finite automaton state in which each of the discrete
nodes corresponds to a distinct behavior. In order to model the aggregation be-
havior of the autonomous agents group, we have been inspired by the biological
aggregation model developed by Jeason et al. [8] from experiments on the lips
of the Germanica cockroach. As an improvement over the existing literature,
in this work, we propose a P-temporal Petri Net model for managing the dif-
ferent states allowed for aggregation process. The Petri Net Theory (PNT) is
well suited to describe the dynamic behaviour of complex concurrent systems
based on graph theoretical concepts. It is also possible according to PNT to
analyse properties of such systems. P-Temporal Petri nets are expected to be
suitable for describing causal and temporal relationships between events of the
aggregation behavior, including eventuality and fairness. By using Petri nets,
the logical behavior of aggregation can be described by explicitly defining the
causal relationships between events and probabilistic conditions in time.

A temporal Petri net (TPN) is presented by: N = (P ;T ;FR;Eft;Lft;m0),
Where:

210

– P = P1 . . . Pn is a finite set of places,
– T = T1 . . . Tm is a finite set of transitions,
– FR ⊆ (P ×t)∪(t×P) the flow relation, (× operator is the cartesian product

between places and transitions),
– Eft and Lft are the earliest and the latest firing time of the transitions

respectively; Eft(t) ≤ Lft(t),
– m0 ⊆ P is the initial marking.

This theory is modular, extensible and appropriate to demonstrate explicitly
causal dependencies and independencies in a set of events and to illustrate the
behaviour of a system on different levels of abstraction without changing tools
and methods [15, 16].

2.1 Aggregation Environment

The simulated environment is presented by a circular lighted arena containing
shelters with variable size (dark places) and periphery zone. The agents are
dispersed in arena and are considered to be identical. Each agent explores the
arena randomly and his local environment is defined by circular perception area
(blue circle in Fig. 1).

Fig. 1. Aggregation Environment presentation

2.2 Model description

The total functionality of the group is decomposed into functional behaviors
such as move or stop. The agents can be in the arena center, in the periphery

211

or in the shelter. The transition probabilities for an agent to switch from one
state to another are continuously modulated by its local environment within its
perception radius, namely the number of stopped neighbours.

The proposed P-temporal Petri net (cf. Fig. 2) comprises 9 places and 20
transitions as given in table 1 and 2 respectively.

Fig. 2. P-temporal Petri nets Model

In arena centre, the agents start by random move state wandering aimlessly in
the environment (P1 place). They remain in this state by changing their direction
at each period T (t0 transition), if one of them detects one or more agents during
his walk, it switches to the short stop state (P2 place) with probability Pshort

and delay Tshort or long stop state (P1 place) with probability (1 − Pshort) and
delay Tlong. This transition is conditioned by number of detected agents (one
or more neighbors). If the stopped agent no longer detects other agents around
itself, it switches back to move walk state (with a certain leave probability).

If an agent detects a periphery during his walk, it switches into a wall-
following behavior (P4 place) with probability Pperiphery. In this state, the agent
aligns its body with periphery and move and similarly at the arena centre , if
it detects one or more agents, it switches into short stop state (P5 place) with
probability Pshort and delay Tshort or long stop state (P6 place) with probability
(1− Pshort) and delay Tlong.

If an agent detects a shelter during his walk, it switches into an exploring
shelter behavior (random walk P7 place) with probability Pshelter. If it detects

212

one or more agents, it switches into short stop state (P8 place) with probability
Pshort and delay Tshort or long stop state (P9 place) with probability (1−Pshort)
and great delay w.

Transition Designation

T0 Reflexive transition into move state with direction change

T1 Transition into short stop state with probability Pshort in arena centre

T2 Transition into move state after Tshort ∈ [0.5, 1.5] in arena centre

T3 Transition into long stop state after Tshort ∈ [0.5, 1.5] in arena centre

T4 Transition into long stop state with probability 1− Pshort in arena centre

T5 Transition into move state after Tlong ∈ [2, 5] in arena centre

T6 Transition into move state in periphery with probability Pperiphery

T7 Transition into short stop state with probability Pshort in periphery

T8 Transition into move state after Tshort ∈ [0.5, 1.5] in periphery

T9 Transition into long stop state after Tshort ∈ [0.5, 1.5] in periphery

T10 Transition into long stop state with probability 1− Pshort in periphery

T11 Transition into move state after Tlong ∈ [2, 5] in periphery

T12 Transition into move state in arena centre with probability Pperiphery

T13 Transition into move state in shelter with probability Pshelter

T14 Transition into short stop state with probability Pshort in shelter

T15 Transition into move state after Tshort ∈ [0.5, 1.5] in shelter

T16 Transition into long stop state with probability 1− Pshort in shelter

T17 Transition into move state after great Tlong ∈ [4, w] in shelter

T18 Transition into long stop state after Tshort ∈ [0.5, 1.5] in shelter

T19 Transition into move state in arena centre with probability (1− Pshelter)

Table 1. Description of transitions

The values of the empirical transition probabilities are Pshort = 0.1, Pperiphery =
0.3 and Pshelter = 0.7.

The proposed Petri Net model should be bounded and live in time (Liveness
and Boundness: are the dynamic properties of each Petri Net). Before testing
these properties, we give some definitions [14] :

– Boundless and safeness: A Petri-Net is k-bounded if for every reachable
marking the number of tokens in any place is not greater than k (a place is
called k-bounded if for every reachable marking the number of tokens in it
is not greater than k). A Petri-Net is bounded, if there is a finite k for which
it is k-bounded. A Petri-Net is safe if it is 1-bounded (1 bounded place is
called a safe place).

– Liveness: A Petri-Net is live if for every transition t and every reachable
marking M there is a firing sequence that leads to a marking M ′ enabling t.

In order to check these properties, we have applied the simulation method by
using TINA. TINA (Time petri Net Analyser) is a software environment to edit

213

Places Designation

P1 Move state in arena centre with delay T ∈ [1, 3]

P2 Short stop state in arena centre with delay Tshort ∈ [0.5, 1.5]

P3 Short stop state in arena centre with delay Tlong ∈ [2, 5]

P4 Move state in periphery with delay T ∈ [1, 3]

P5 Short stop state periphery with delay Tshort ∈ [0.5, 1.5]

P6 Short stop state periphery with delay Tlong ∈ [2, 5]

P7 Move state in shelter with delay T ∈ [1, 3]

P8 Short stop state shelter with delay Tshort ∈ [0.5, 1.5]

P9 Short stop state shelter with delay Tlong ∈ [4, w]

Table 2. Description of places

and analyse Petri nets, Time Petri nets, and some extensions of these nets [16].
We can get with the help of TINA the verification of correctness of the pro-
posed design. Fig. 3 presents the analysis results of the proposed Petri Net.
Analysis with TINA tool confirms the liveness, reachability of system states, in-
variants, and no deadlocks of the proposed Petri Net system. The petri Net-work
is bounded and all transitions are live from a given initial marking and agent
configuration in environment. It shows that the agent will not be in a deadlock
or infinite cycle during its aggregation.

Fig. 3. Reachability analysis of P-temporal Petri-Nets model

214

3 Simulation and results

In this section, we developed a simulator to study the relevance of the proposed
model based on P-temporal Petri Nets. We use Java language with the standard
API J2D and JFreeChart library. The objective of simulations is to bring the
agents together at some location in the environment (i.e. aggregate them) via
P-temporal Petri Nets control. Each agent is equipped with a sensor, which
allows it to know whether or not there is another agent in the direct line of
sight of the sensor. Agents have an average speed of 1cm/s and can evaluate the
number of neighbors using local communication (we assume that each robot has
unique ID or can randomly choose its ID from a sufficiently large set). Notice
that behavioural probabilities in our model are independent from the agents’
speed. The communication range (here 1cm) of each individual is depicted by a
circular blue disc. The number of agents is changed in the simulations in order
to analyze the scalability of the approach.

The aggregation dynamics were characterized through three kinds of metrics:
size of shelter, number of Shelters (without, one or two shelter) and number of
isolated agents in arena. In the first case, we achieved the implementation of
our model in environment without shelter (Fig. 4). 12 agents are placed in a
homogeneous arena, with random positions and orientations. After 40 s, we
observe that agents strongly aggregate under the periphery (one isolated agent).

Fig. 4. Snapshots of simulation for aggregation process in arena periphery

In the second case, we put one shelter in arena (dark place) with 15 agents
(Fig. 5). We can observe that agents prefer and aggregate under this shelter
(after 36 s, 14 agents are under shelter and only one in periphery).

215

Fig. 5. Snapshots of simulation for aggregation process in Shelter

In this simulation, the number of agents in shelter was counted every one
second to characterize the aggregation dynamics under each shelter (Fig. 6).

Fig. 6. Choice dynamics: number of agents aggregated under shelter

In Fig. 7, the snapshots correspond to the simulation with two identical
shelters and 15 agents. Note that a agent can be in one of these three locations:
under shelter 1, under shelter 2 or outside the shelters. As can be seen, the
simulation ended with the choice of one of the two shelters by agents.

The agents are able to perform a collective choice for a given aggregation
shelter, even if these shelters are identical (Fig. 8).

216

Fig. 7. Snapshots of simulation for aggregation process in two identical Shelters

In the following simulation case (Fig 9), we put two different shelters in size
(shelter 1 diameter is 2.5 cm and shelter 2 diameter is 4.5 cm) and 15 agents.

In this case, we showed that a self-enhanced aggregation process is associated
with a preference for a largest shelter. The agents strongly choose the shelter
able to house their whole population. Furthermore, this choice can be related to
a collective ability to compare the sizes of the aggregation sites.

In the last case of simulation (Fig. 10), we put two identical smallest shelters
(diameter for each shelter is 2cm) with 20 agents.

As can be seen, the simulation ended with the choice for the two shelters by
agents (with equivalent partition).

Fig. 8. Choice dynamics: number of agents aggregated under two identical Shelters

217

Fig. 9. Snapshots of simulation for aggregation process in two different Shelters

Fig. 10. Snapshots of simulation for aggregation process in two identical smallest Shel-
ters

218

From these sets of simulation, we can conclude that the group of agent will
choose preferentially a shelter that is sufficiently large to house all its members.
But when the group is confronted with two sufficiently large shelters, the self-
enhanced aggregation mechanism can lead the group to two stable choices, with
a preference for the larger shelter. If the two shelters are not able to house the
whole of population, the agents can be partitioned similarly in the both shelters.
This implies that the group of robots is able to sense and compare the size of
the shelters during the collective decision process.

To test the relevance of these results, we ran a two sets of simulation during
which a group of agents faced the choice between two potential aggregation
sites. Consequently, proving that a collective decision can appear in agents from
a simple aggregation process.

In first set, we test the mechanism of the collective choice for the largest
shelter. We use an arena with two different dark shelters (shelter 1 diameter
is 2.5 cm and shelter 2 diameter is 4.5 cm) and we varied the agent number.
We repeat the simulation for each number of agents and we compute the agent
percentage under the largest shelter at the end for each simulation (Figure 11
and 12). We find that the preference of the largest shelter starts from 9 agents.

Fig. 11. Simulation set for the collective choice for the largest shelter

In the second set of simulation (30 runs), we test the relevance of the popu-
lation sharing mechanism between shelters with small area (which cannot house
the whole population of agents). We use an arena with two identical dark shelters
(shelter 1 diameter is 2.5 cm and shelter 2 diameter is 2.5 cm) and 20 agents.
We compute the agent number in each shelter at the end of simulation for each
run (Fig. 13). For the whole execution, we notice an equivalent sharing between
the two shelters. The average agent in the shelter 1 is 8.46 and for the shelter 2
is equal to 8.5, which confirms this mechanism of self-enhanced in aggregation
process.

219

Fig. 12. Choice dynamics: aggregation under two different shelters with varied agent
number (5 in row 1 and 15 in row 2)

4 Conclusion

In this work, we achieved development and implementation of a behavior ag-
gregation model based on P-temporal Petri Nets in a group of agents that is
capable of quantitative prediction of self-organized agent aggregation dynamics.
This model is tested with sets of simulation in different environment configu-
rations (without shelter, one shelter, two identical shelters with different size
and two different shelters). In terms of sensory abilities between biological and
the proposed model, the aggregation dynamics observed in agents closely match
those observed in cockroaches (Jeason et al model). This proposed model at-
tested that, the choice of aggregating site can be related to a collective ability to
compare the sizes of the aggregation sites. This work opens some interesting per-
spectives. We project to extend this model for self-organized phenomena based
on P-temporel Petri Nets on other scales that might be governed by similar or
different behaviors of swarm intelligence by using of evolutionary approaches.

References

1. Seley T., Camazine S., Sneyd J. (1991). Collective decision-making in honey bees:
how colonies choose among nectar sources. Behavioural Ecology and Sociobiology,
28, 277–290.

2. Jeanson R., Deneubourg J.-L., Theraulaz G.(2004). Modulation of individual be-
havior and collective decision-making during aggregation site selection by the ant
Messor sancta. Behavioral Ecology and Sociobiology, 55, 388–394.

3. Amé J.-M., Rivault C., Deneubourg J.-L. (2004). Cockroach aggregation based on
strain odour recognition.Animal Behaviour, 68(4), 793–801.

220

Fig. 13. Simulation set for the population sharing mechanism between shelters

4. Deneubourg J. L,. Lioni. A, Detrain C. (2002). Dynamics of aggregation and emer-
gence of cooperation. Biological Bulletin, 202(3):262–7.

5. Soysal O., Sahin E. (2007). A macroscopic model for self-organized aggregation in
swarm robotic system. Swarm Robotics Ws LNCS pp 27-42.

6. Ando H., Oasa Y., Suzuki I., Yamashita M. (1999). Distributed memoryless
point convergence algorithm for mobile robots with limited visibility. IEEE Trans
Robotic Autom 15(5):818–828

7. Cortés J., Martinez S., Bullo F. (2006). Robust rendezvous for mobile autonomous
agents via proximity graphs in arbitrary dimensions. IEEE Trans Automat Control
51(8):1289–1298

8. Jeanson R., Rivault C., Deneubourg J.-L., Blancos S., Fourniers R., Jost C., Ther-
aulaz G. (2005). Self-Organized aggregation in cockroaches, Animal Behaviour, 69,
169-180.

9. Garnier S., Jost C., Gautrais J., Asadpour M., Caprari G., Jeanson R., Grimal
A., Theraulaz G. (2008). The embodiment of cockroach aggregation behavior in a
group of micro-robots. Artificial Life 14(4):387–408.

10. Amé J.-M., Rivault C., Deneubourg J.-L. (2004). Cockroach aggregation based on
strain odour recognition. Animal Behaviour 68, 793–801.

11. Amé J.-M., Halloy J., Rivault C., Detrain C., Deneubourg J.-L. (2006). Collegial
decision making based on social amplification leads to optimal group formation.
Proceedings of the National Academy of Sciences of the USA, 103, 5835–5840.

12. Trianni V. (2008) Evolutionary Swarm Robotics, Studies in Computational Intel-
ligence, vol 108. Springer Verlag, Berlin, Germany.

13. Correll N., Martinoli A. (2011) Modeling and designing self-organized aggregation
in a swarm of miniature robots. Int J Robot Res 30(5):615–626.

14. Herrmann J. W., Lin E. (1997). Petri Nets: Tutorial and Applications. The 32th
Annual Symp. of the Washington Oper. Res. Management Science Council.

15. Berthomieu B., Vernadat F. (2006). Time Petri Nets Analysis with TINA, tool
paper, In Proceedings of 3rd Int. Conf. on The Quantitative Evaluation of Systems
(QEST 2006), IEEE Computer Society.

16. TINA toolbox. http://projects.laas.fr/tina/ access date: 11/09/2015.

221

222

A Distributed Hybrid Algorithm for the Graph
Coloring Problem

Ines Sghir1,2, Jin-Kao Hao1,?, Ines Ben Jaafar2, and Khaled Ghédira2

1 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
2 SOIE, ISG, Université de Tunis, Cité Bouchoucha 2000 Le Bardo, Tunis, Tunisie

Abstract. We propose a multi-agent based Distributed Hybrid algo-
rithm for the Graph Coloring Problem (DH-GCP). DH-GCP applies a
tabu search procedure with two different neighborhood structures for
its intensification. To diversify the search into unexplored promising re-
gions, two crossover operators and two types of perturbation moves are
performed. All these search components are managed by a multi-agent
model which uses reinforcement learning for decision making. The per-
formance of the proposed algorithm is evaluated on well-known DIMACS
benchmark instances.

1 Introduction

Given an undirected graph G = (V,E) with vertex set V and edge set E. A
legal (or proper) k-coloring of G (k is an integer) is a partition of V , i.e., S =
{V1, V2, ..., Vk} where each subset Vr ⊂ V is an independent set (also called a
legal color class) such that no two vertices of Vr are linked by an edge. Given k
colors, the k-coloring problem (k-COL) is to find a legal k-coloring. The graph
coloring problem (GCP) is to determine the smallest integer k (i.e., the chromatic
number χG of G) such that there exists a legal k-coloring of G.

GCP has numerous important applications in practice and is known to be
computational difficult. Given its relevance, GCP is certainly among the most
studied NP-hard problems [8]. Among the large number of GCP solution ap-
proaches (see e.g., [12, 20]), most of them are based on neighborhood search
[1, 2, 5, 6, 15–17, 22, 27], hybrid population search [4, 7, 10, 9, 18, 19, 21, 23, 26] or
other hybrid scheme [14, 24, 28]. More GCP methods can be found in [8, 12, 20].

In this paper, we study a distributed algorithm for GCP which is based on
the principle of multi-agent systems. As our general solution strategy, we adopt
the very popular k-fixed penalty approach [12] which was used in many previous
algorithms like [5, 6, 9, 12, 18, 19, 23]. With this approach, we fix the number k of
colors and seek a legal k-coloring among all possible (legal or illegal) k-colorings.
Given a k-coloring S, the evaluation or fitness function f(S) calculates the num-
ber of conflicts induced by S, i.e., the number of edges whose end-points are
colored with the same color. Thus, f(S) = 0 indicates that S is a legal coloring.
The algorithm tries to solve the k-coloring problem by minimizing the fitness

? Corresponding author: jin-kao.hao@univ-angers.fr

223

function f . Finally, to approximate the chromatic number of G, we try to solve
a series of k-coloring problems with decreasing values of k.

The rest of the paper is organized as follows. Section 2 describes the proposed
algorithm. Section 3 presents the experimental results achieved on DIMACS
benchmark instances. Finally, section 4 concludes the paper.

2 A distributed hybrid algorithm for GCP

The proposed distributed hybrid algorithm for GCP (DH-GCP) explores a set of
interacting agents which are local optimization procedures, crossover operators
and perturbation techniques. The coordination of these agents is realized in an
informed way using reinforcement learning. The learning mechanism modifies
and adapts the search strategy according to the experiences obtained during
the search process. The agents are learners and players that ensure the role of
intensification and diversification to explore the given search space. This study
constitutes a continuation of our recent work on multi-agent based optimization
applied to the quadratic assignment problem [25].

2.1 Weight matrix with Reinforcement learning

Reinforcement learning here aims to learn what to do and how to plan situa-
tions to actions, in order to maximize a numerical reward signal. In most forms of
learning, the learner is told which actions to take, but for reinforcement learning,
the learner needs to discover the action that leads to the best reward based on
previous experiences. A learner must be able to learn from its own experiences to
make decisions. In the proposed DH-GCP algorithm, decisions or actions corre-
spond to techniques of diversification or intensification to apply and experiences
are acquired during the search progress. Following [13], we use decision rules
represented by a couple (Condition,Action). Let C be the set of conditions de-
scribing the search progress and A the set of actions or decisions to perform.
For a condition Ci, a weight Wij (initialized to 0) is associated to each action
Aj . We use the following equation [13] to calculate the probability P (Ci, Aj) for
applying an action Aj based on a condition Ci:

P (Ci, Aj) =
Wij∑
j∈AWij

(1)

At the beginning of the algorithm (i.e., first iterations of Algorithm 2), the
improvement situation is assigned to a default condition. According to the weight
matrix W , the most appropriate action for this condition is selected based on the
probability given in Eq. (1). Then, at the end of each generation, the performed
action is evaluated and the concerned weight value is increased if there is an
improvement in solution quality. A credit assignment is used to perform rein-
forcement learning in order to select the beneficial experiences and determine a
reward for them. Here, an experience is represented as a triplet (condition Ci,
action Aj, improvement V). When a new best local or global solution is found,

2

224

the weight value Wij which is related to the action of this generation is rein-
forced by adding a reward rate σ to Wij . Before adding the reinforcement value,
the weight values Wij in the decision matrix is decreased with an evaporation
value µ, in order to enlarge the influence of the new reward obtained in the
current generation. The reinforcement with reward σ is then performed using
the following equations [13]:

W ′ij = µ×W ′′ij (2)

Wij = µ×W ′ij + σ (3)

where W ′ij is the weight value before the reinforcement, W ′′ij is the weight value
before the evaporation, µ is the evaporation value and σ is the learning factor.

Figure 1 shows an illustrative example of this reinforcement learning process
(See section 2.3 for more details). In the proposed algorithm, this matrix is used
by the mediator agent (Section 2.3) and the tabu search agents (Section 2.4).

A1 A2

C1

C2

C3

2 1

1

A1 A2

C1

C2

C3

2 1

11

2.5

reinforcement=1

Evaporation rate=0.5

Matrix before reinforcement Matrix after reinforcement

1

0.5C4 31

1 2

C4

1 2

Fig. 1. An example of reinforcement learning procedure with weight matrix: We sup-
pose that the current condition is C4 (e.g., the local best solution has not been improved
in recent 10 generations). Under this condition, action A2 (e.g., activate crossover
agents) is performed for the current generation (this action has the highest value in
the matrix) and obtained a further improvement. Then, reinforcement is applied by
adjusting the weight W42 to augment the chance of selecting again the applied action
under this condition (e.g. W42 = 3× 0.5 + 1 = 2.5). The weight W41 is decreased by
µ (e.g. W41 = 1× 0.5 = 0.5)

2.2 Agent interaction in DH-GCP

The proposed DH-GCP is a distributed approach composed of interacting agents.
Each agent has a local view of the problem, but the collaboration of these
agents can help find good solutions for GCP. We consider the following agents:
the mediator agent, the tabu search agents, the perturbation agent and the
crossover agents. Figure 2 describes the architecture of DH-GCP while Algo-
rithm 1 presents the general procedure of DH-GCP. Algorithms 2 and 3 describe
the behaviors of the mediator agent and the tabu search agents.

3

225

The DH-GCP algorithm explores several search cycles (generations, see the
‘while’ structure of Algorithm 2). In each cycle, the mediator agent is responsible
to decide which agents will be activated using its weight matrix according to
the state of search process. The activated agents can be tabu search agents
or crossover agents (Algorithm 2). During the process of tabu search agents,
they can trigger the perturbation agent (to diversify the search). Note that
agents are not activated in a pre-specified order. Instead, their activation depends
on the past learning experiences and is dynamically adjusted. In the following
subsections, we explain the behaviors of each type of agents.

Mediator Agent

Tabu search agent 1

Tabu search agent 2

Crossover operator agent 1

Crossover operator agent 2

Perturbation operator agent

Intensification Search Diversification Search

Best k-coloring Best k-coloring

k-coloring

k-coloring

k-coloring

Archive of

 best

 k-coloring

Fig. 2. Agent communication in DH-GCP: Mediator agent is the agent who manages
the search according to the improvement realized, tabu search agents ensure search
intensification while crossover agents and perturbation agent are responsible for diver-
sification

2.3 Mediator agent

The mediator agent selects other agents to trigger based on its weight matrix
(Section 2.1). When other agents (tabu search agents or crossover agents) are
triggered, the mediator agent waits for (improved) solutions received from these
agents and to record the received solutions in the shared memory (archive). The
behavior of the mediator agent is described in Algorithm 2.

4

226

Algorithm 1 DH-GCP general procedure

Require: Graph G, number of colors k, four types of agents: mediator agent, two tabu
search agents, perturbation agent and two crossover agents

Ensure: The best k-coloring Sbest

1: while A legal k-coloring Sbest not reached do
2: The mediator agent starts the algorithm by initialing the search and then decides

to trigger tabu search agents or crossover agents based on its weight matrix
(Algorithm 2)

3: if The mediator agent decides to activate tabu search agents then
4: The tabu search agents are activated and the mediator agent waits for a k-

coloring from the activated tabu agents (Algorithm 3)
5: if An activated tabu search agent needs to trigger a perturbation agent then
6: The tabu search agent actives the required perturbation agent and waits

for solution from the perturbation agent (Section 2.5)
7: The perturbation agent is killed after sending the k-coloring found to the

corresponding tabu search agent
8: end if
9: if An tabu search agent wants to cooperate with other tabu search agent

then
10: The requiring tabu search agent waits for a new k-coloring from other tabu

search agent (Algorithm 3)
11: end if
12: The tabu search agents are killed after sending the best solutions generated

during their search to the mediator agent
13: end if
14: if The mediator agent decides to activate crossover agents then
15: The crossover agents are activated and the mediator agent waits for the best

k-coloring from the crossover agents (Section 2.6)
16: The crossover agents are killed after sending new solutions to the mediator

agent
17: end if
18: end while
19: Return The best legal k-coloring found Sbest from the mediator agent

5

227

Algorithm 2 Mediator agent behavior

Require: Graph G, number of class k, parameters: improvement threshold interval
interval, consecutive non-improving iterations max opt.

Ensure: A best legal k-coloring Sbest found so far
1: S ← Generate initial k − coloring S0 {Section 2.3}
2: Sbest ← S0 {Sbest records the best k-coloring found so far}
3: fbest ← f0 {fbest records the best objective value of the best k-coloring reached so

far}
4: opt← 0 {opt is the counter for consecutive non-improving local optimum}
5: W ← 0 {W is the weight matrix of the mediator agent}
6: pop← ∅ {pop is the archive of elite solutions found during the search}
7: while A legal k-coloring Sbest not reached (fbest 6= 0) do
8: Update W using interval, opt and max opt {Sections 2.1 and 2.3}
9: Action type← Select an action to activate based on W {Section 2.3}

10: if Action type = tabu search agents then
11: Trigger tabu search agents and send Sbest to them
12: else
13: Trigger crossover agents and send Sbest to them
14: opt← 0
15: end if
16: S1 ← ∅, S2 ← ∅ {S1 and S2 are k-colorings received from the activated agents}
17: if S1 6= ∅ AND S2 6= ∅ then
18: if f(S1) ≤ f(S2) then
19: S ← S1

20: else
21: S ← S2

22: end if
23: tr ← Exist(S1, S2, pop) {Check if S1 and/or S2 are in the archive pop}
24: if tr = false then
25: add S1 and/or S2 to pop {add both k-colorings or one of them in pop}
26: end if
27: if f(S) ≤ fbest then
28: Sbest ← S
29: fbest ← f(S)
30: else
31: opt← opt+ 1
32: end if
33: else
34: block this agent {The mediator agent waits for k-coloring from other activated

agents}
35: end if
36: end while
37: Return Sbest

6

228

The initial solution The mediator agent creates an initial legal coloring using
the greedy largest saturation degree heuristic (DSATUR) [3]. Then, starting
with this initial coloring, it randomly displaces the vertices whose color number
is higher than the given color number k to a color class between [1, k]. This
procedure usually leads to an illegal k-coloring which will be repaired by the
DH-GCP algorithm.

Conditions and actions of weight matrix The weight matrix of the me-
diator agent is composed of two types of actions: A1 corresponds to activating
the tabu search agents, and A2 corresponds to activating the crossover agents.
The conditions, which cover significant situations that may occur in the search
process, are:

– C1 = The algorithm does not reach m0 generations (cycles);
– C2 = The local or global best solution is improved in recent m1 generations

and this improvement is a small improvement in the fitness function value
f ;

– C3 = The local or global best solution is improved in recent m1 generations
and this improvement is a large improvement in the fitness function value f ;

– C4 = The global best solution has not been improved in recent m2 genera-
tions. This solution is a deep local optimum or an optimum solution.

where m0, m1 and m2 are parameters set by the user according to the total gen-
eration number. When there is a large improvement obtained by the application
of an action between two successive generations (this corresponds to the situa-
tions C1 and C3), it is better to apply an intensification process by triggering
the tabu search agents. If the mediator agent observes no improvement or an
insignificant improvement (this corresponds to the situations C2 and C4), the
search needs to be diversified by activating crossover agents. After each genera-
tion (i.e., when the activated agents return their found solution), the mediator
agent updates its weight matrix (see Section 2.1).

Archive of elite solutions The mediator agent saves the best k-coloring,
received from tabu search agents and crossover agents, in an archive. The archive
represents a shared memory between all agents. It is updated by the mediator
agent with new solutions of good quality.

2.4 Tabu search agents

The mediator agent can activate two tabu search agents, when it observes that
the search process needs to be intensified (lines 4 – 11 of Algorithm 2). Each
tabu search agent applies a specific strategy based on a particular neighborhood
to seek new solutions (line 7 to line 10 of Algorithm 3). During the search, a tabu
search agent can exchange its solutions with another alive tabu search agent or
with a perturbation agent (line 14 to line 28 of Algorithm 3). These communica-
tions depend on a weight matrix(lines 16 and 17 of Algorithm 3). At the end of

7

229

each tabu search agent run, the best k-coloring found by each agent is sent to the
mediator agent (line 36 of Algorithm 3). The behavior of the tabu search agent is
described in Algorithm 3. Below, we define the used neighborhood structures for
each tabu search agent. Then, we explain the conditions and actions employed
by them.

Neighborhoods A candidate solution for GCP can be generated by changing
the color class of vertices. Different modifications lead to different neighborhood
structures. In this work, we explore 3 neighborhoods: the vertex neighborhood
which changes the color of some conflicting vertices, the class neighborhood
which changes the color of some or all vertices of a conflicting color class, and the
non-increasing neighborhood which changes the color of some vertices without
increasing the total number of conflicting edges.

Neighborhood exploration strategies In DH-GCP, we use two complemen-
tary neighborhood strategies due to the cooperation act realized by each tabu
search agent. One of these strategies, performed by our first tabu search agent,
changes the colors of conflicting vertices to produce new k-colorings. This is done
by moving a conflicting vertex x from its original color class Vi to the best possi-
ble other color class Vj (i 6= j) (this change or move is denoted by (x, i, j)). The
new color class for each conflicting vertex x is chosen among those which are
not assigned to vertices adjacent to x. Among these color classes found, the best
possible color class (in terms of fitness minimization) is selected for the consid-
ered conflicting vertex. Our second tabu search age nt uses the same mechanism
of selecting the best color class to be assigned to vertices as the first tabu search
agent. The difference is that these vertices are not the set of conflicting vertices,
but the adjacent of conflicting vertices. The tabu search agent chooses the best
color class for each vertex belonging to the set of adjacent vertices of conflict
vertices. The best color affected must not belong to the color classes affected to
conflicting vertices.

For these two neighborhood strategies, tabu search agents evaluate each move
using an incremental evaluation technique [6, 9, 10]. This technique consists of
maintaining a special data structure that records the move values for each can-
didate neighborhood move.

Tabu list Each tabu search agent uses a tabu list to forbid the reverse moves.
When a move (x,i,j) is generated, vertex x is forbidden to move back to color
class Vi for the next h iterations (called tabu tenure). The tabu tenure is dy-
namically determined by h = f(S) + r(10) where r(10) is a random number
between 1 and 10 [10]. The stop condition of each tabu search is a fixed number
of iterations.

8

230

Algorithm 3 Tabu search agents behavior

Require: Graph G, number of colors k, A k-coloring Sbest received from mediator
agent, parameters: maximum iterations iteration max, improvement threshold in-
terval interval, consecutive non-improving iterations max opt TS.

Ensure: A k-coloring Sbest TS

1: S ← S0 {S is the current k-coloring found by each tabu search agent}
2: Tabu list← 0 {Tabu list is the tabu list, Section 2.4}
3: Q← 0 {Q is the weight matrix of each tabu search agent, Section 2.4}
4: opt = 0 {opt is the counter for consecutive non-improving local optima for each

tabu search agent}
5: S1 ← S0 {S1 is the k-coloring obtained in generation iteration− 1}
6: while iteration ≤ iteration max do
7: S ← Generate the best neighboring k-coloring {Sections 2.4 and 2.4}
8: Update Tabu list
9: if f(S) ≤ f(Sbest TS) then

10: Sbest TS ← S
11: else
12: opt = opt+ 1
13: end if
14: if (f(S)− f(S1) < interval)or (opt = max opt TS) then
15: Sperturbed ← ∅ {Sperturbed is a k-coloring received from other agents (tabu

search agent or perturbation agent}
16: Update Q {Update the weight matrix based on the improvement of the current

solution, opt, interval and max opt TS, Section 2}
17: Action exchange← Select the agent to trigger based on Q
18: if Action exchange=Activating perturbation agent then
19: Activate the perturbation agent and send it the current k-coloring S
20: opt=0 {opt is reset to 0, only when strong perturbation behaviour is trigged,

Section 2.5}
21: end if
22: if Action exchange=Activating other tabu search agent then
23: Request the current k-coloring of other tabu search agent
24: end if
25: Let Sperturbed be the perturbed solution received from the perturbation agent

or other tabu search agent
26: if Sperturbed 6= ∅ then
27: S ← Sperturbed

28: else
29: block this agent {Tabu search agent waits for a solution from other agents}
30: end if
31: else
32: S1 ← S {Tabu search agent applies tabu search without exchanging solutions

with other agents}
33: end if
34: iteration = iteration+ 1
35: end while
36: Return Sbest TS to mediator agent

9

231

Conditions and actions of weight matrix The actions considered by the
tabu search agents are as follows:

– A1 = activating other tabu search agents;
– A2 = activating the strong perturbation behavior in the perturbation agent;
– A3 = activating the reduced perturbation behavior in the perturbation agent.

The set of the conditions are:

– C1 = the local best k-coloring is improved in recent q1 generations and this
improvement is a small improvement in the fitness function value f ;

– C2 = the local best k-coloring is improved in recent q2 generations;
– C3 = the local best k-coloring is improved in recent q3 generations and
q3 > q2.

where q1, q2 and q3 are parameters set by the user according to the total gener-
ation number.

Each of these conditions promotes a certain action. Thus, C1 increases the
chance of activating other tabu search agent, to reinforce intensification. C2 and
C3 reinforce the action of triggering the perturbation agent, in order to increase
diversification. The selection of the most suitable action is controlled by the
corresponding weight matrix of each tabu search agent.

2.5 Perturbation operator agent

The perturbation agent, triggered by tabu search agents (lines 18-20 of Algo-
rithm 3), creates a disturbed k-coloring solution by exploring two types of per-
turbations. The new k-coloring is then sent to the tabu search agent (line 25 of
Algorithm 3) for further improvement.

Reduced perturbation technique The reduced perturbation technique can
be triggered when a tabu search agent observes a slight search stagnation (con-
dition C2 of Section 2.4). From the k-coloring received from the tabu search
agent, the perturbation agent makes t moves to create a new solution, where
each move changes randomly the color of a conflicting vertex of the incumbent
solution. The number t of moves is chosen randomly between 1 and conf (where
conf is the number of conflicting vertices).

Strong perturbation technique The strong perturbation technique is per-
formed when a tabu search agent tabu search agent observes deep search stagna-
tion. The perturbation agent uses the shared archive of elite k-colorings to create
a new solution. It extracts the number of occurrence of each vertex x colored by
each color class Vi. Starting with an uncolored graph, each vertex x is colored
with a color class Vi which has the smallest occurrence number. Dedicated data
structures are employed to avoid the creation of the same solution for future
calls to the perturbation agent.

10

232

2.6 Crossover agents

When the mediator agent decides to activate the crossover agents (line 13 of
Algorithm 2), two crossover agents are created based on two different operators
from the literature: the AMPaX operator [18] and the GPX operator [10]. The
new k-coloring solutions from the two crossover agents are sent to the mediator
agent to continue the search process. Experimental results showed that the joint
use of these two crossover operators performs better than any of them used alone.

3 Experimentation

3.1 Experimental results

In this section, we present experimental results of our DH-GCP algorithm on a
set of well-known DIMACS coloring benchmarks and compare the results with
other state-of-the-art coloring algorithms from the literature. Our DH-GCP algo-
rithm is implemented in Java using the multi-agent platform Jade. The program
is run on a computer with a Core I5 2.5 GHz, 8GB of RAM.

Table 1. Computational results of DH-GCP on the set of difficult DIMACS challenge
benchmarks

DH-GCP
Instances |V | |E| dens k∗ references k hit time(m)

DSJC250.5 250 15,668 0.50 28 [10, 11, 16, 19, 22, 23, 26, 14, 28] 28 10/10 5
DSJC500.1 500 12,458 0.10 12 [2, 11, 16, 19, 22, 23, 26, 14, 28, 21] 12 10/10 6
DSJC500.5 500 62,624 0.50 47 [21] - - -

48 [2, 10, 11, 16, 19, 22, 26, 14, 28] 48 10/10 85
DSJC500.9 500 112,437 0.90 126 [2, 11, 16, 19, 22, 23, 26, 14, 28, 21] 126 10/10 320
DSJC1000.1 1000 49,629 0.10 20 [10, 2, 11, 16, 19, 22, 23, 26, 14, 28, 21] 20 10/10 441
DSJC1000.5 1000 249,826 0.5 82 [21] - - -

83 [10, 19, 22, 23, 14, 28] 83 10/10 205
DSJC1000.9 1000 449,449 0.90 222 [10, 2, 16, 22, 23, 26, 14, 28, 21] 222 4/10 801
DSJR500.1c 500 121,275 0.97 85 [16, 19, 23, 26, 14, 28] 85 10/10 60
DSJR500.5 500 58,862 0.47 122 [16, 24, 23, 26, 14, 28] 122 3/10 480

R250.5 250 14,849 0.48 65 [2, 19, 23, 26, 14, 28] 65 10/10 42
R1000.1c 1000 485,090 0.97 98 [2, 19, 23, 26, 14, 28] 98 10/10 55
R1000.5 1000 238,267 0.48 234 [16] - - -

238 [26] 240 2/10 1120
le450 15c 450 16,680 0.17 15 [11, 16, 19, 22, 26, 14, 28] 15 10/10 40
le450 15d 450 16,750 0.17 15 [11, 16, 19, 22, 26, 14, 28] 15 10/10 50
le450 25c 450 17,343 0.17 25 [2, 19, 23, 26, 14, 28] 25 10/10 120
le450 25d 450 17,425 0.17 25 [2, 19, 23, 26, 14, 28] 25 10/10 42

flat300 26 0 300 21,633 0.48 26 [2, 19, 26, 14, 28] 26 10/10 40
flat300 28 0 300 21,695 0.48 29 [22, 18] 30 5/10 500
flat1000 50 0 1000 245,000 0.49 50 [11, 16, 19, 22, 26, 14, 28, 21] 50 10/10 40
flat1000 60 0 1000 245,830 0.49 60 [11, 16, 19, 22, 26, 14, 28, 21] 60 10/10 45
flat1000 76 0 1000 246,708 0.49 81 [14, 21] - - -

82 [19, 23, 26, 28] 82 10/10 280
C2000.5 2000 999,836 0.50 145 [14] - - -

146 [28] 147 1/5 8000
latin sqr 10 900 307,350 0.76 97 [26] 98 2/10 600

11

233

Each instance is solved 10 times independently (5 times for very large graphs).
We stop the algorithm when a legal k-coloring is found or the fixed execution
timeout is reached. For all instances, a timeout limit of 240 CPU hours is used ex-
cept for the large graph C2000.5 where a limit of 500 CPU hours (note that large
computing times are usually allowed in the literature on GCP). We adjusted the
parameters of the proposed algorithms by an experimental study. The number
of iterations for each tabu search agent (iter max) is fixed to 1000. The param-
eters max opt (for mediator agent) and max opt TS (for tabu search agent),
that evaluate the improvement of solutions between generations, are fixed to 20
and 2 for respectively. For interval, we consider the same value 10 for the same
agents. The rate µ used in updating the weight matrices is fixed to 0.9.

Table 1 summarizes the computational results of our DH-GCP algorithm.
Columns 2-4 show the features of the tested instance: the number of vertices
(|V |), the number of edges (|E|) and the density of the graph (dens). Columns
5 and 6 corresponds to the best known results k∗ ever reported in the literature
and the corresponding references. The remaining columns give the computational
results of our DH-GCP algorithm: the smallest number of colors needed to obtain
a legal k-coloring, the success rate (#hit) and the average time for reaching the
best legal k-coloring (time in minutes).

Table 1 shows that the results obtained by our DH-GCP algorithm are com-
petitive with respect to many state of the art algorithms in terms of solution
quality (i.e., the number of colors used). It can reach previous best known re-
sults except for 7 very difficult cases (DSJC500.5, DSJC1000.5, flat300 28 0,
flat1000 76 0, latin sqr 10, C2000.5 and R1000.5) for which very few algorithms
are able to attain the best known results. For these 7 instances, the devia-
tion between our results and the best-known results is respectively 0.021 (for
DSJC500.5), 0.012 (for DSJC1000.5), 0.034 (for flat300 28 0), 0.012 (for flat1000 76 0),
0.002 (for R1000.5), 0.013 (for C2000.5) and 0.01 (for latin sqr 10) respectively.
Even if we do not show detailed comparisons with individual algorithms due
to space limit, we mention that the results achieved by DH-GCP remain com-
petitive compared with many reference coloring algorithms in terms of solution
quality.

4 Conclusion

The proposed distributed hybrid algorithm for the Graph Coloring Problem
(DH-GCP) relies on the principles of multi-agent systems to explore a search
space with the help of an ensemble of working agents (tabu search agents,
crossover agents, perturbation agents). These agents are coordinated by a me-
diator agent using a reinforcement learning mechanism in order to make right
search decisions. Decisions are influenced by a learning-based probabilistic strat-
egy which dynamically adjusts the application probability of a particular action
under a specific condition. According to whether the search process needs to be
intensified or diversified, the mediator agent triggers, based on a weight matrix,

12

234

either an intensification agent (tabu search agents) or a diversification agent
(perturbation agents, crossover agents).

The proposed algorithm is assessed on a set of 23 difficult DIMACS color-
ing benchmarks. The computational results show that DH-GCP is able to reach
the previous best known results except for 7 very difficult cases and remains
competitive compared to many coloring algorithms. On the other hand, the cur-
rent version of the algorithm, which is a proof-of-concept prototype, is rather
time consuming, partially due to the multi-agent platform Jade used for its im-
plementation. One possible way to improve the computational efficiency of the
algorithm would be to envisage a dedicated distributed implementation. Finally,
one notes that the proposed framework is general enough to be adapted to solve
other combinatorial search problems. Our previous work on the quadratic assign-
ment problem showed interesting results [25], it would be worthy of investigating
this multi-agent based optimization framework within other settings.

Acknowledgments

We are grateful to the anonymous referees for valuable suggestions and com-
ments which helped us improve the paper. The work is partially supported by
the PGMO project (2013-2015, Jacques Hadamard Mathematical Foundation,
Paris).

References

1. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for Graph
coloring. European Journal of Operational Research 151(2): 379–388 (2003)

2. Blochliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers and Operations Research 35(3): 960–975 (2008)

3. Brélaz, D.: New methods to color the vertices of a graph. Communications of the
ACM. 22(4): 251–256 (1979)

4. Chalupa, D.: Population-based and learning-based metaheuristic algorithms for
the graph coloring problem. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO, pp.
465–472. ACM (2011)

5. Chiarandini, M., Stützle, T.: An application of iterated local search to graph color-
ing. In: Johnson, D.S., Mehrotra, A., Trick, M. (eds.) Proc. of the Computational
Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA,
pp. 112–125 (2002)

6. Dorne, R., Hao, J.K.: Tabu Search for graph coloring, T-coloring and Set T-
colorings. In: Osman, I.H., et al. (eds.) Metaheuristics 1998: Theory and Appli-
cations. ch. 3. Kluver Academic Publishers (1998)

7. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring.
PPSN-98, vol 1498 of LNCS, pp. 745–754, Springer-Verlag, (1998)

8. Johnson D.S., Trick M. (ed.): Cliques, coloring, and satisfiability: Second DIMACS
implementation challenge, DIMACS Series in Discrete Math. and Theor. Comput.
Sci. vol. 26 (1996)

13

235

9. Fleurent, C. and Ferland, J.A.: Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research 63: 437–461 (1996)

10. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3(4): 379–397 (1999)

11. Galinier, P., Hertz, A. and Zufferey, N.: An adaptive memory algorithm for the
K-colouring problem. Discrete Applied Mathematics 156(2): 267–279 (2008)

12. Galinier, P., Hamiez, J.P., Hao, J.K. and Porumbel D.: Recent advances in graph
vertex coloring. In I. Zelinka, A. Abraham, V. Snasel (Eds.) Handbook of Opti-
mization. Springer. pp 505–528 (2013)

13. Guo, Y., Goncalves, Y., and Hsu, T.: A multi-agent based self-adaptive genetic al-
gorithm for the long-term car pooling problem. Journal of Mathematical Modelling
and Algorithms in Operations Research 12(1): 45–66 (2013)

14. Hao, J.K., Wu Q.: Improving the extraction and expansion method for large graph
coloring. Discrete Applied Mathematics 160(16-17): 2397–2407 (2012)

15. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4): 345–351 (1987)

16. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring.
Discrete Applied Mathematics 156(13): 2551–2560 (2008)

17. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated
annealing: An experimental evaluation; Part II, Graph coloring and number par-
titioning. Operations Research 39(3): 378–406 (1991)

18. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of
Operational Research 203(1): 241–250 (2010)

19. Malaguti, E., Monaci, M. and Toth, P.: A metaheuristic approach for the vertex
coloring problem. INFORMS Journal on Computing 20(2): 302–316 (2008)

20. Malaguti, E., Toth P.: A survey on vertex coloring problems. Intl. Transactions in
Operational Research 17(1): 1–34. (2010)

21. Moalic, L., Gondran A.: The new memetic algorithm HEAD for graph coloring: an
easy way for managing diversity. In Ochoa and Chicano (Eds.) EvoCOP2015, vol
9026 of LNCS, pp. 173–183 (2015)

22. Porumbel, D., Hao, J.K. and Kuntz, P.: A search space ”cartography” for guid-
ing graph coloring heuristics. Computers and Operations Research 37(4): 769–778
(2010)

23. Porumbel, D., Hao, J.K. and Kuntz, P.: An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring. Comput-
ers and Operations Research 37(10): 1822–1832 (2010)

24. Prestwich, S.: Coloration neighbourhood search with forward checking. Annals of
Mathematics and Artificial Intelligence 34(4): 327–340 (2002)

25. Sghir, I., Hao, J.K., Ben Jaafar, I., and Ghédira, K.: A multi-agent based optimiza-
tion method applied to the quadratic assignment problem, Accepted to Expert
Systems with Applications (2015)

26. Titiloye, O. and Crispin, A.: Graph coloring with a distributed hybrid quantum
annealing algorithm. In J. O’Shea et al. (eds.), Agent and Multi-Agent Systems:
Technologies and Applications, vol. 6682 of LNCS, pp. 553–562 (2011)

27. Trick, M.A., Yildiz, H.: A large neighborhood search heuristic for graph coloring.
In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. vol. 4510 of LNCS, pp.
346–360 (2007)

28. Wu, Q., Hao, J.K.: Coloring large graphs based on independent set extraction.
Computers and Operations Research 39: 283–290 (2012)

14

236

237

Variance Reduction in Population-Based
Optimization: Application to Unit Commitment

Jean-Joseph Christophe, Jérémie Decock, Jialin Liu, Olivier Teytaud

Bat 660 Claude Shannon Univ. Paris-Sud, 91190 Gif-sur-Yvette, France
{firstname.lastname}@inria.fr

https://tao.lri.fr

Abstract. We consider noisy optimization and some traditional vari-
ance reduction techniques aimed at improving the convergence rate,
namely (i) common random numbers (CRN), which is relevant for population-
based noisy optimization and (ii) stratified sampling, which is relevant
for most noisy optimization problems. We present artificial models of
noise for which common random numbers are very efficient, and artifi-
cial models of noise for which common random numbers are detrimental.
We then experiment on a desperately expensive unit commitment prob-
lem. As expected, stratified sampling is never detrimental. Nonetheless,
in practice, common random numbers provided, by far, most of the im-
provement.

Keywords: Noisy Optimization, Variance Reduction, Stratified Sampling, Com-
mon Random Numbers

1 Introduction

1.1 Noisy black-box optimization

We consider a function f(x,w), with x in a d-dimensional search domain and
w a random variable with values in D ⊂ R. We assume that the optimization
algorithm has only access to independent random realizations of f(x,w). The
goal of the optimization algorithm is to approximate x∗ = arg min

x∈Rd

Ew[f(x,w)].

1.2 Noisy optimization with variance reduction

In standard noisy optimization frameworks, the black-box noisy optimization
algorithm, for its nth request to the black-box objective function, can only pro-
vide some x and receive a realization of f(x,wn). The wn, n ∈ {1, 2, . . . }, are
independent samples of w. The algorithm can not influence the wn. Contrarily
to this standard setting, we here assume that the algorithm can request f(x,wn)
where wn is:

– either an independent copy of w (independent of all previously used values);

238

– or a previously used value wm for some m < n (m is chosen by the optimiza-
tion algorithm).

Due to this possibility, paired sampling can be applied, i.e. the same wn can
be used several times, as explained later. In addition, we assume that we have
strata. A stratum is a subset of D. Strata have empty intersections and their
union is D (i.e. they realize a partition of D). When an independent copy of
w is requested, the algorithm can decide to provide it conditionally to a chosen
stratum. Thanks to strata, we can apply stratified sampling (Section 1.3).

1.3 Statistics of variance reduction

Monte Carlo methods are the estimation of the expected value of a random
variable owing to a randomly drawn sample. Typically, in our context, E[f(x,w)]
can be estimated as a result of f(x,w1), f(x,w2), . . . , f(x,wn), where the wi are
independent copies of w, i ∈ {1, . . . , n}. Laws of large numbers prove, under
various assumptions, the convergence of Monte Carlo estimates such as (see [2])

Êf(x,w) =
1

n

n∑

i=1

f(x,wi)→ Ewf(x,w). (1)

There are also classical techniques for improving the convergence:

– Antithetic variates (symmetries): ensure some regularity of the sampling by
using symmetries. For example, if the random variable w has distribution
invariant by symmetry w.r.t 0, then, instead of Eq. 1, we use Eq. 2, which
reduces the variance:

Êf(x,w)=
1

n

n/2∑

i=1

(f(x,wi) + f(x,−wi)) . (2)

More sophisticated antithetic variables are possible (combining several sym-
metries).

– Importance sampling: instead of sampling w with density dP , we sample w′

with density dP ′. We choose w′ such that the density dP ′ of w′ is higher
in parts of the domain which are critical for the estimation. However, this
change of distribution introduces a bias. Therefore, when computing the
average, we change the weights of individuals by the ratio of probability
densities as shown in Eq. 3 - which is an unbiased estimate.

Êf(x,w)=
1

n

n∑

i=1

dP (wi)

dP ′(wi)
f(x,wi) (3)

– Quasi Monte Carlo methods: use samples aimed at being as uniform as
possible over the domain. Quasi Monte Carlo methods are widely used in in-
tegration; thanks to modern randomized Quasi Monte Carlo methods, they

239

are usually at least as efficient as Monte Carlo and much better in favor-
able situations [16, 3, 13, 24]. There are interesting (but difficult and rather
“white-box”) tricks for making them applicable for time-dependent random
processes with many time steps [15].

– [6] proposes to generate a finite sample which approximates a random pro-
cess, optimally for some metric. This method has advantages when applied in
the framework of Bellman algorithms as it can provide a tree representation,
mitigating the anticipativity issue. But it is hardly applicable when aiming
at the convergence to the solution for the underlying random process.

– Control variates: instead of estimating Ef(x,w), we estimate E (f(x,w)− g(x,w)),
using

Ef(x,w) = Eg(x,w)︸ ︷︷ ︸
A

+E (f(x,w)− g(x,w))︸ ︷︷ ︸
B

.

This makes sense if g is a reasonable approximation of f (so that term B has
a small variance) and term A can be computed quickly (e.g. if computing g
is much faster than computing f or A can be computed analytically).

– Stratified sampling is the case in which each wi is randomly drawn con-
ditionally to a stratum. We consider that the domain of w is partitioned
into disjoint strata S1, . . . , SN . N is the number of strata. The stratifica-
tion function i 7→ s(i) is chosen by the algorithm and wi is randomly drawn
conditionally to wi ∈ Ss(i).

Êf(x,w)=
n∑

i=1

P (w ∈ Ss(i))f(x,wi)

Cardinality{j ∈ {1, . . . , n};wj ∈ Ss(i)}
(4)

– Common random numbers (CRN), or paired comparison, refer to the case
where we want to know Ef(x,w) for several x, and use the same samples
w1, . . . , wn for the different possible values of x.

In this paper, we focus on stratified sampling and paired sampling, in the
context of optimization with arbitrary random processes. They are easy to adapt
to such a context, which is not true for other methods cited above.

Stratified sampling Stratified sampling involves building strata and sampling
in these strata.

Simultaneously building strata and sampling There are some works doing both
simultaneously, i.e. build strata adaptively depending on current samples. For
example, [11, 18] present an iterative algorithm which stratifies a highly skewed
population into a take-all stratum and a number of take-some strata. [10] im-
proves their algorithm by taking into account the gap between the variable used
for stratifying and the random value to be integrated.

240

A priori stratification However, frequently, strata are built in an ad hoc man-
ner depending on the application at hand. For example, an auxiliary variable
f̃(x∗, w) might approximate w 7→ f(x∗, w), and then strata can be defined as
a partition of the f̃(x∗, w). It is also convenient for visualization, as in many
cases the user is interested in viewing statistics for w leading to extreme values
of f(x∗, w). More generally, two criteria dictate the choice of strata:

– a small variance inside each stratum, i.e. Varw|Sf(x∗, w) small for each stra-
tum S, is a good idea;

– interpretable strata for visualization purpose.

The sampling can be

– proportional, i.e. the number of samples in each stratum S is proportional
to the probability P (w ∈ S);

– or optimal, i.e. the number of samples in each stratum S is proportional
to a product of P (w ∈ S) and an approximation of the standard deviation√
Varw|Sf(x∗, w). In this case, reweighting is necessary, as in Eq. 4.

Stratified noisy optimization Compared to classical stratified Monte Carlo, an
additional difficulty when working in stratified noisy optimization is that x∗ is
unknown, so we can not easily sample f(x∗, w). Also, the strata should be used
for many different x; if some of them are very different, nothing guarantees that
the variance V arw|Sf(x,w) is approximately the same for each x and for x∗. As
a consequence, there are few works using stratification for noisy optimization
and there is, to the best of our knowledge, no work using optimal sampling for
noisy optimization, although there are many works around optimal sampling.
We will here focus on the simple proportional case. In some papers[12], the word
“stratified” is used for Latin Hypercube Sampling; we do not use it in that sense
in the present paper.

Common random numbers & paired sampling Common Random Num-
bers (CRN), also called correlated sampling or pairing, is a simple but power-
ful technique for variance reduction in noisy optimization problems. Consider
x1, x2 ∈ Rd, where d is the dimension of the search domain and wi denotes the
ith independent copy of w:

Var
n∑

i=1

(f(x1, wi)− f(x2, w
′
i))

= nVar (f(x1, w1)− f(x2, w
′
1))

= nVarf(x1, w1) + nVarf(x2, w
′
1)

−2nCov (f(x1, w1), f(x2, w
′
1)) .

If Cov(f(x1, wi), f(x2, w
′
i)) > 0, i.e. there is a positive correlation between

f(x1, wi) and f(x2, w
′
i), the estimation errors are smaller. CRN is based on

wi = w′i, which is usually a simple and efficient solution for correlating f(x1, wi)

241

and f(x2, w
′
i); there are examples in which, however, this does not lead to a pos-

itive correlation. In Section 2.2, we will present examples in which CRN does
not work.

Pairing in artificial intelligence Pairing is used in different application do-
mains related to optimization. In games, it is a common practice to compare
algorithms based on their behaviors on a finite constant set of examples [8].
The cost of labelling (i.e. the cost for finding the ground truth regarding the
value of a game position) is a classical reason for this. This is different from
simulating against paired random realizations (because it is usually an adver-
sarial context rather than a stochastic one), though it is also a form of pairing
and is related to our framework of dynamic optimization. More generally, paired
statistical tests improve the performance of stochastic optimization methods,
e.g. dynamic Random Search [7, 25] and Differential Evolution [20]. I has been
proposed [23] to use a paired comparison-based Interactive Differential Evolu-
tion method with faster rates. In Direct Policy Search, paired noisy optimization
has been proposed in [22, 21, 9]. Our work follows such approaches and combines
them with stratified sampling. This is developed in the next section. In Stochas-
tic Dynamic Programming (SDP) [1] and its dual counterpart Dual SDP [17], the
classical Sample Average Approximation (SAA) reduces the problem to a finite
set of scenarios; the same set of random seeds is used for all the optimization
run. It is indeed often difficult to do better, because there are sometimes not
infinitely many scenarios available. Variants of dual SDP have also been tested
with increasing set of random realizations [14] or one (new, independent) ran-
dom realization per iteration [19]. A key point in SDP is that one must take
care of anticipativity constraints, which are usually tackled by a special struc-
ture of the random process. This is beyond the scope of this paper; we focus
on direct policy search, in which this issue is far less relevant as long as we can
sample infinitely many scenarios. However, our results on the compared benefits
of stratified sampling and common random numbers suggest similar tests in non
direct approaches using Bellman values.

2 Algorithms

2.1 Different forms of pairing

For each request xn to the objective function oracle, the algorithm also provides
a set Seedn of random seeds; Seedn = {seedn,1, . . . , seedn,mn

}. Ef(xn, w) is
then approximated as 1

mn

∑mn

i=1 f(xn, seedn,i).
One can see in the literature different kinds of pairing. The simplest one

is as follows: all sets of random seeds are equal for all search points evaluated
during the run, i.e. Seedn is the same for all n. The drawback of this approach
is that it relies on a sample average approximation: the good news is that the
objective function becomes deterministic; but the approximation of the optimum
is only good up to the relevance of the chosen sample and we can not guarantee

242

convergence to the real optimum. Variants consider mn increasing and nested
sets Seedn, such as ∀(n ∈ N+, i ≤ mn), mn+1 ≥ mn and seedn,i = seedn+1,i. A
more sophisticated version is that all random seeds are equal inside an offspring,
but they are changed between offspring (see discussion above). We will test this,
as an intermediate step between CRN and no pairing at all. In Section 2.2, we
explain on an illustrative example why in some cases, pairing can be detrimental.
It might therefore make sense to have partial pairing. In order to have the best
of both worlds, we propose in Section 2.3 an algorithm for switching smoothly
from full pairing to no pairing at all.

2.2 Why common random numbers can be detrimental

The phenomenon by which common random numbers can improve convergence
rates is well understood; correlating the noise between several points tends to
transform the noise into a constant additive term, which has therefore less impact
- a perfectly constant additive term has (for most algorithms) no impact on the
run. Setting α = 1 in Eq. 5 (below), modelizing an objective function, provides
an example in which pairing totally cancels the noise.

f(x,w) = ||x||2 + αw′ + 20(1− α)w′′ · x (5)

We here explain why CRN can be detrimental on a simple illustrative exam-
ple. Let us assume (toy example) that

– We evaluate an investment policy on a wind farm.
– A key parameter is the orientation of the wind turbines.
– A crucial part of the noise is the orientation of wind.
– We evaluate 30 different individuals per generation, which are 30 different

policies - each individual (policy) has a dominant orientation.
– Each policy is evaluated on 50 different simulated wind events.

With CRN: If the wind orientation (which is randomized) was on average
more East than it would be on expectation, then, in case of pairing (i.e. CRN),
this “East orientation bias” is the same for all evaluated policies. As a con-
sequence, the selected individuals are more East-oriented. The next iterate is
therefore biased toward East-oriented.

Without CRN: Even if the wind orientation is too much East for the simu-
lated wind events for individual 1, such a bias is unlikely to occur for all individ-
uals. Therefore, some individuals will be selected with a East orientation bias,
but others with a West orientation bias or other biases. As a conclusion, the
next iterate will incur an average of many uncorrelated random biases, which is
therefore less biased.

2.3 Proposed intermediate algorithm

We have seen that pairing can be efficient or detrimental depending on the prob-
lem. We will here propose an intermediate algorithm (Algorithm 1), somewhere

243

Algorithm 1 One iteration of a population-based noisy optimization algorithm
with pairing.

Require: A population-based noisy optimization algorithm (in particular, rule for
generating offspring)

Require: n: current iteration number
Require: r ∈ N+: a resampling rule
Require: λ: a population size
Require: g : N+ → N+: a non-decreasing mapping such that g(r) ≥ r
1: Generate λ individuals i1, . . . , iλ to be evaluated at this iteration
2: Compute the resampling number r by the resampling rule
3: Generate Pr,g(r) = (wr,1, . . . , wr,g(r)) a set of g(r) random seeds (we will see below

different rules)
4: Each of these λ individuals is evaluated r times with r distinct random seeds

randomly drawn in the family Pr,g(r).

in between the paired case (g(r) = r) and the totally unpaired case (g(r) >> r).

The Pr,g(r) can be

– Nested, i.e. ∀(i, r), g(r) ≥ i ⇒ wr,i = wr+1,i. The (wr,i)i≤g(r) for a fixed r
are then independent.

– Independent, i.e. all the wr,i are randomly independently identically drawn.

SAA is equivalent to the nested case with n 7→ r(n) constant, i.e. we always
use the same set of random seeds. [14] corresponds to the nested case. Classical
CRN consists in g(r) = r and independent sampling.

We will design, in Section 3, an artificial testbed which smoothly (paramet-
rically depending on α in Eq. 5) switches

– from an ideal case for pairing (testbed in which pairing cancels the noise, as
α = 1 in Eq. 5);

– to worst case for pairing (counterexample as illustrated above, Section 2.2).

and which (depending on g(·)) switches from fully paired to fully indepen-
dent. We will compare stratified sampling and paired sampling on this artificial
testbed. Later, we will consider a realistic application (Section 4).

3 Artificial experiments

We consider a (µ/µ, λ)-Self-Adaptive Evolution Strategy, with λ = 8d2, µ =
min(2d, λ/4) and some resampling rule r(n) = dnde, where n is the current
iteration number. We apply Algorithm 1 with g : N+ 7→ N+ defined by

g(r) = round(rβ),

where β ≥ 1 is a parameter which regulates the pairing level. When β = 1,
the function evaluations are fully paired; when β → ∞, the function evalua-
tions are fully independent. All experiments are performed with 10000 function
evaluations and are reproduced 9999 times.

244

3.1 Artificial testbed for paired noisy optimization

With w = (w′, w′′), let us define

f(x,w) = ||x||2 + αw′ + 20(1− α)w′′ · x (5)

where · denotes the scalar product. Two different cases are considered for the
random processes:

– Continuous case: w′ is a unidimensional standard Gaussian random variable
and w′′ is a d-dimensional standard Gaussian random variable.

– Discrete case: w′ is a Bernoulli random variable with parameter 1
2 and w′′

is a vector of d independent random variables equal to 1 with probability 1
2

and −1 otherwise. For the stratified sampling, in case of 4 strata, we use the
2 first components of w′′, which lead to 4 different cases: one for (−1,−1),
one for (1, 1), one for (−1, 1) and one for (1,−1).

The motivations for this testbed are as follows:

– It is a generalization of the classical sphere function.
– The case α = 1 is very easy for pairing (just a Sample Average Approximation

(SAA) is enough for fast convergence as in the noise-free case - β = 1,
i.e. g(r(n)) = r(n), leads to canceling noise, even with resampling number
r(n) = 1).

– The case α = 0 is very hard for pairing; the case β = 1 (full pairing) means
that the noise has the same bias for all points.

– For the discrete framework, the stratified sampling directly reduces the di-
mension of the noisy case: the two first components have no more noise in
the stratified case.

3.2 Experimental results

We study

E
log ||x||2
log ne

(6)

(the lower the better), where x is the estimate of the optimum after ne = 10000
function evaluations and the optimum is 0. Experiments are reproduced 9999
times. The continuous case leads to results in Table 1. Standard deviations are
±0.0015 for the worst cases and are not presented. Essentially, the results are:

– When α is close to 1, small β (more pairing) is better.
– When α is close to 0, large β (nearly no pairing) is better.

In the discrete case, it is easy to define pairing: we can use strata correspond to
distinct values of the two first components of w′′. Using the four strata corre-
sponding to the 2 possible values of each of the two first components of w′′, we get
results presented in Table 2. We still see that pairing is good or bad depending
on the case (sometimes leading to no convergence whereas the non-paired case
converges, see row α = 0 in dimension 5) and never brings huge improvements;
whereas stratified sampling is always a good idea in our experiments.

245

Table 1. Efficiency (average values) of pairing (i.e. case β small) in the continuous case.
Left hand side columns (β small) have more pairing than right hand side columns. Pair-
ing is efficient for the “gentle” noise α = 1, up to a moderate 50% faster; but it is harm-
ful when α = 0 (correlated noise). Next results will investigate stratification. Bold font
shows best performance and significant improvements. Positive numbers correspond to
no convergence; they are never in bold. Intermediate values of β (intermediate levels
of pairing) were never significantly better than others and not clearly more robust to
changes in α.

α β = 1.0 β = 1.16 β = 1.35 β = 1.57 β = 1.82 β = 2.12 β = 2.46
(paired) (' unpaired)

dimension 2 (bold for best tested algorithm)
α = 0 -0.07435 -0.06654 -0.07670 -0.08581 -0.09219 -0.09603 -0.09344
α = 0.8 -0.34475 -0.34661 -0.35921 -0.36253 -0.36565 -0.36709 -0.36917
α = 1 -0.75048 -0.52772 -0.50544 -0.49794 -0.49109 -0.49339 -0.49182

dimension 3 (bold for best tested algorithm)
α = 0 -0.06258 -0.06373 -0.07978 -0.09489 -0.10463 -0.10931 -0.10977
α = 1 -0.47681 -0.43320 -0.41439 -0.41004 -0.40880 -0.40202 -0.39641

dimension 5 (bold for best tested algorithm)
α = 0 0.02965 0.03964 0.04409 0.04394 0.04680 0.04826 0.04823
α = 0.8 -0.15077 -0.15977 -0.16369 -0.16687 -0.16770 -0.16793 -0.16920
α = 1 -0.23235 -0.23188 -0.23174 -0.23125 -0.23225 -0.23232 -0.23182

Dimension 10 (bold for best tested algorithm)
β = 1 β =∞

(paired) (' unpaired)
α = 0 0.097 -0.033
α = 0.8 0.038 -0.053
α = 1.0 -0.057 -0.054

4 Real world experiments

4.1 Paired noisy optimization for dynamic problems

Paired statistical tests (e.g. Pegasus [5]) convert a stochastic optimization prob-
lem into a deterministic and easier one. Although Pegasus can cause excessive
“overfitting” (specialization to the set of considered seeds) when using a fixed
number of scenarios, several methods, e.g. using Wilcoxon signed rank sum test
or changing the scenarios during learning, can reduce the “overfitting” [22, 21].
Wilcoxon signed rank sum test pays more attention to small improvements across
all scenarios rather than large changes over the return of an individual one, so
that it can reduce the “overfitting” caused by a few extreme (good or bad) sce-
narios. [21] also shows that using an adaptive number of trials for each policy
can speed-up learning in such a CRN framework. In the present work, we use
new scenarios for each generation - we assume that there is no constraint on
the availability of possible realizations w. Another related existing work is [9].
It compares Independent Random Numbers (IRN), Common Random Numbers
(CRN) and Partial Common Random Numbers (PCRN, which use pairing in
the sense that the same pseudo-random numbers are used several times but in
different orders) for Simultaneous Perturbation Stochastic Approximation and
Finite Differences Stochastic Approximation. Both algorithms are faster when
using CRN. The present work is dedicated to evolution strategies.

246

Table 2. Table of results (average slope as in Eq. 6; the lower, the better) depending on
α (defining the problem) and β (defining the level of pairing; β = 1 means full pairing, β
large means no pairing). We see that pairing can have a positive or a negative effect. We
include results with stratified sampling; which are better or much better depending on
the cases. Negligible standard deviations are not presented. Numbers in the stratified
case are in bold when they outperform the non stratified setting.

α β = 1.0 β = 1.16 β = 1.35 β = 1.57 β = 1.82 β = 2.12 β = 2.46
dimension 2, no stratified sampling (bold for signif. best)

α = 0 -0.07200 -0.06392 -0.07926 -0.08873 -0.09539 -0.09443 -0.09382
α = 1 -0.74716 -0.52659 -0.50665 -0.49758 -0.49383 -0.49402 -0.49310

dimension 3, no stratified sampling (bold for signif. best)
α = 0 -0.00802 -0.00519 -0.01246 -0.01672 -0.01750 -0.01660 -0.01635
α = 0.4 -0.09327 -0.10422 -0.11704 -0.12771 -0.13248 -0.13375 -0.13138
α = 0.8 -0.25365 -0.27016 -0.28168 -0.29045 -0.29341 -0.29459 -0.29474
α = 1 -0.39480 -0.38398 -0.37981 -0.37504 -0.37562 -0.37646 -0.37653

dimension 3, stratified sampling (bold if better than no stratification)
α = 0 -0.01931 -0.01396 -0.02585 -0.03590 -0.04430 -0.04836 -0.04744
α = 0.8 -0.26548 -0.28079 -0.29481 -0.30133 -0.30797 -0.30761 -0.30763
α = 1 -0.39714 -0.38346 -0.38021 -0.37749 -0.37411 -0.37614 -0.37442

dimension 5, no stratified sampling (bold for signif. best)
α = 0 0.03285 0.04253 0.04896 0.04962 0.05125 0.05336 0.05412
α = 1 -0.23188 -0.23207 -0.23265 -0.23080 -0.23219 -0.23148 -0.23042

Dimension 5, stratified sampling (bold if better than no stratification)
α = 0 0.00197 -0.00880 -0.02657 -0.04158 -0.04991 -0.05404 -0.04617
α = 1 -0.23294 -0.23146 -0.23161 -0.23150 -0.23228 -0.23158 -0.23198

Dimension 10, no stratified sampling (bold for signif. best)
β = 1 β =∞

(paired) (' unpaired)
α = 0 0.108 -0.105
α = 0.8 0.012 -0.072
α = 1 -0.056 -0.055

Dimension 10, stratified sampling (bold if better than no stratification)
α = 0 0.047 -0.106
α = 0.8 -0.033 -0.072
α = 1 -0.057 -0.056

4.2 Unit commitment problem

For real world experiments, we consider the following sequential decision making
problem in the Markov Decision Processes (MDP) framework, using discrete
time steps: 10 batteries are managed to store energy bought and sold on the
electricity market and 10 decision variables have to be made at each time step
(i.e. the quantity of energy to buy or to sell for each battery) in order to maximize
profits. We apply rolling planning, also known as shrinking horizon, i.e. new
forecasts are used for updating the decisions. There are 168 time steps, i.e. 7
days with one hour per time step. We use an operational horizon o = 5 time
steps, i.e. decisions are made by groups of 5 time steps. When a decision is
made, it covers 5 decisions and there is no recourse on these decisions. We have
a tactical horizon h = 10 time steps, i.e. we optimize over the 10 next time steps
to speed up computations instead of doing it for all remaining time steps.

4.3 Testbed

We define the following variables: x is the vector of the weights of a neural
network; x parametrizes the energy policy described in Eqs. 7 and 8 and d is the

247

dimension of x. w is a random process modeling the market price. The policy
(Eq. 7) uses a neural network to decide the parameters (Eq. 8) of the valorization
function. The valorization function provides an estimate of the marginal value
of each stock; that is, it provides, for each stock, how much (on the reward over
the tactical horizon) we are willing to pay for increasing this stock by one unit.

dt = arg max(reward over (t, . . . , t+ h))

+
d′∑

i=1

ζist+h,i. (7)

Each state variable corresponds to a stock. We see in Eq. 7 a compromise between
the current reward (first term) and the sum

∑10
i=1 ζi× st+h,i over stocks (second

term). The ζi are estimates of the marginal values of each stock by the neural
network. In Eq. 7, dt is the vector of decisions to apply from the current time
step t to time step t+h ; st+h = (st+h,1, . . . , st+h,d′) is the state at the end of the
tactical horizon (the quantity of energy contained in each of the 10 batteries);
d′ is the number of outputs of the neural network. It is equal to the number of
stocks, as we have one marginal value per stock. ζi is the ith output of the neural
network:

(ζ1, . . . , ζd′) = neuralNetwork(x, st). (8)

st+h,i depends on the random process and the decision:

(rewardt, st+h) = transition(st, dt, random process). (9)

rewardt is the reward over the operational horizon, i.e. from time t to t+ o, i.e.
t+ 5. The transition function describes the problem. We use a (µ, λ)-evolution
strategy to optimize x according to the objective function f(x,w). f(x,w) is the
simulation function: it applies repeatedly the policy (Eq. 7) and the transition
function (Eq. 9) from an initial state s0 to a final state s168. The returned value
is the cumulative reward, i.e. the sum of the rewardt. The following setup is
used: d = 60; λ = 4(d+1) = 244; µ = λ/4; r(n) = d10

√
n+ 1e. We define paired

optimization (a.k.a common random numbers) and stratified sampling in such a
case:

– We apply an evolutionary algorithm for optimizing the parameters (i.e. the
weights) x = (x1, . . . , x60) of the neural network controller.

– Each evaluation is a Monte Carlo average reward for a vector of parameters;
a Monte Carlo evaluation is a call to f(x,w) above.

– These evaluations are either pure Monte Carlo, paired Monte Carlo, stratified
Monte Carlo or paired stratified Monte Carlo.

Common random numbers for energy policies: In the case of CRN (also known
as pairing) for the specific case of energy policies, we apply g(r(n)) = r(n),
i.e. the same random outcomes w1, . . . , wr(n) are used for all individuals of a
generation. The random outcomes w1, . . . , wr(n) are independently drawn for
each new generation.

248

0 10000 20000 30000 40000 50000 60000 70000 80000
Evaluation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
re

w
ar

d
(M

)

Evolution of the performance during the DPS policy build

Pairing and stratification
Pairing
Reference
Stratification (noise factor)

Fig. 1. X-axis: evaluation index. Y-axis: reward (the higher the better). We see that
pairing is very efficient whereas stratification provides no clear improvement.

Stratified sampling for energy policies: Stratification in the general case was
defined earlier; we here discuss the application to our specific problem. It is very
natural, as far as possible, to ensure that points are equally sampled among the
25% best cases, the 25% worst cases, the second quartile and the third quartile.

Even if these categories can only be approximately evaluated, this should
decrease the variance. It is usually a good idea to stratify according to quantiles
of a quantity which is as related as possible to the quantity to be averaged,
i.e. f(x,w). The four strata are the four quantiles on the annual average of an
important scalar component of the noise.

Experimental results in Figure 1 show that pairing provides huge improve-
ment in the realistic case. Stratification has a minor impact.

5 Conclusions

We tested, in an artificial test case and a Direct Policy Search problem in power
management, paired optimization (a.k.a common random numbers) and partial
variants of it. We also tested stratified sampling. Both algorithms are easy to
implement, “almost” black-box and applicable for most applications. Paired op-
timization is unstable; it can be efficient in simple cases, but detrimental with
more difficult models of noise, as shown by results on α = 1 (positive effect)
and α = 0 (negative effect) in the artificial case (Eq. 5). We provided illus-
trative examples of such a detrimental effect (Section 2.2). Stratification had
sometimes a positive effect on the artificial test case and was never detrimental.
Nonetheless, on the realistic problem, pairing provided a great improvement,
much more than stratification. Pairing and stratification are not totally black

249

box; however, implementing stratification and pairing is usually easy and fast
and we could do it easily on our realistic problem. We tested an intermediate
algorithm with a parameter for switching smoothly from fully paired noisy op-
timization to totally unpaired noisy optimization. However, this parametrized
algorithm (intermediate values of β) was not clearly better than the fully un-
paired algorithm (β = ∞). It was not more robust in the case α = 0, unless β
is so large that there is essentially no pairing at all. As a conclusion, we firmly
recommend common random numbers for population-based noisy optimization.
Realistic counter-examples to CRN’s efficiency would be welcome - we had such
detrimental effects only in artificially built counter-example. There are probably
cases (e.g. problems with rare critical cases) in which stratification also helps
a lot, though this was not established in our application (which does not have
natural strata).

Further work. Other variance reduction techniques are possible. A nice
challenge for future research is to find algorithms protecting variance reduction
techniques from their possible detrimental effects (e.g. as efficient as CRN when
α = 1 in Eq. 5 and as efficient as no pairing when α = 0). In particular impor-
tance sampling with optimal allocation per stratum (though we need variance
estimates for that, which is difficult in a noisy optimization setting), quasi Monte
Carlo (more difficult in a nearly black-box setting), or quantization [4, 6].

Also, we used g(r) = round(rβ). Results were somehow disappointing. Maybe
more subtle formulas, with g(r) = round(ArB), could be used instead, in par-
ticular B = 1 and A > 1; or g(r) might be made adaptive.

References

1. Bellman, R.: Dynamic Programming. Princeton Univ. Press (1957)
2. Billingsley, P.: Probability and Measure. John Wiley and Sons (1986)
3. Cranley, R., Patterson, T.: Randomization of number theoretic methods for mul-

tiple integration. SIAM J. Numer. Anal. 13(6), 904914 (1976)
4. Defourny, B.: Machine Learning Solution Methods for Multistage Stochastic Pro-

gramming. Ph.D. thesis, Institut Montefiore, Université de Liège (2010)
5. Dowell, M., Jarratt, P.: The “pegasus” method for computing the root of an equa-

tion. BIT Numerical Mathematics 12(4), 503–508 (1972), http://dx.doi.org/10.
1007/BF01932959

6. Dupacov, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochas-
tic programming: An approach using probability metrics. No. 20 in Stochas-
tic Programming E-Print Series, Institut fr Mathematik (2000), \url{http:

//edoc.hu-berlin.de/docviews/abstract.php?id=26613}, published; Springer;
Berlin [u.a.]; Mathematical Programming; 95; 2003; 3

7. Hamzaçebi, C., Kutay, F.: Continuous functions minimization by dynamic random
search technique. Applied Mathematical Modelling 31(10), 2189–2198 (2007)

8. Huang, S.C., Coulom, R., Lin, S.S.: Monte-Carlo simulation balancing in practice.
In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) Computers and Games. Lecture
Notes in Computer Science, vol. 6515, pp. 81–92. Springer (2010)

9. Kleinman, N.L., Spall, J.C., Naiman, D.Q.: Simulation-based optimization with
stochastic approximation using common random numbers. Management Science

250

45(11), 1570–1578 (1999), http://pubsonline.informs.org/doi/abs/10.1287/

mnsc.45.11.1570

10. Kozak, M.: Optimal stratification using random search method in agricultural
surveys. Statistics in Transition 6(5), 797–806 (2004), http://www.researchgate.
net/publication/229051808_Optimal_stratification_using_random_search_

method_in_agricultural_surveys/file/d912f5062bc010dd58.pdf

11. Lavallée, P., Hidiroglou, M.: On the stratification of skewed populations. Sur-
vey Methodology 14(1), 33–43 (1988), http://www.amstat.org/sections/srms/
Proceedings/papers/1987_142.pdf

12. Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods
for stochastic programming. Annals OR 142(1), 215–241 (2006), http://dblp.

uni-trier.de/db/journals/anor/anor142.html#LinderothSW06

13. Mascagni, M., Chi, H.: On the scrambled halton sequence. Monte-Carlo Methods
Appl. 10(3), 435–442 (2004)

14. de Matos, V., Philpott, A., Finardi, E.: Improving the performance of stochas-
tic dual dynamic programming. Applications – OR and Management Sciences
(Scheduling) (2012), http://www.optimization-online.org/DB_FILE/2012/07/

3529.pdf

15. Morokoff, W.J.: Generating quasi-random paths for stochastic processes 40(4),
765–788 (Dec 1998), http://epubs.siam.org/sam-bin/dbq/article/31795

16. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods
(1992)

17. Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to
energy planning. Math. Program. 52(2), 359–375 (Oct 1991), http://dx.doi.org/
10.1007/BF01582895

18. Sethi, V.: A note on optimum stratification of populations for estimating the pop-
ulation means. Australian Journal of Statistics 5(1), 20–33 (1963)

19. Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse
stochastic dual dynamic programming method. European Journal of Operational
Research 224(2), 375–391 (2013)

20. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization 11(4), 341–359
(1997)

21. Strens, M., Lx, H.G., Moore, A., Brodley, E., Danyluk, A.: Policy search using
paired comparisons. Journal of Machine Learning Research 3, 921–950 (2002)

22. Strens, M., Moore, A.: Direct policy search using paired statistical tests. In: Pro-
ceedings of the 18th International Conference on Machine Learning. pp. 545–552.
Morgan Kaufmann, San Francisco, CA (2001)

23. Takagi, H., Pallez, D.: Paired comparison-based interactive differential evolution.
In: Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress
on. pp. 475–480. IEEE (2009)

24. Wang, X., Hickernell, F.: Randomized halton sequences. Math. Comput. Modelling
32, 887–899 (2000)

25. Zabinsky, Z.B.: Random search algorithms. Wiley Encyclopedia of Operations Re-
search and Management Science (2009)

251

252

On the codimension of the set of optima: large
scale optimisation with few relevant variables

Vincent Berthier, Olivier Teytaud

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud)
Bat 660 Claude Shannon Univ. Paris-Sud, 91190 Gif-sur-Yvette, France

Email: {firstname.lastname}@inria.fr

Abstract. The complexity of continuous optimisation by comparison-
based algorithms has been developed in several recent papers.Roughly
speaking, these papers conclude that a precision ε can be reached with
cost Θ(n log(1/ε)) in dimension n within polylogarithmic factors for the
sphere function. Compared to other (non comparison-based) algorithms,
this rate is not excellent; on the other hand, it is classically considered
that comparison-based algorithms have some robustness advantages, as
well as scalability on parallel machines and simplicity. In the present pa-
per we show another advantage, namely resilience to useless variables,
thanks to a complexity bound Θ(m log(1/ε)) where m is the codimension
of the set of optima, possibly m << n. In addition, experiments show
that some evolutionary algorithms have a negligible computational com-
plexity even in high dimension, making them practical for huge problems
with many useless variables.

1 Introduction

In many, if not most, optimisation problems, different variables have different
weight in the evaluation of the fitness function: one such example is the simple
ellipsoid f(x) = 106x21 +

∑D
i=2 x

2
i , where one variable (x1) has a “weight” one

million times more important than the other variables. We say that the condition
number of the problem is of one million. In some cases though, some variables
do not only have a far lesser impact on the evaluation function than others,
their impact is nil. By opposition to the other “critical” variables, they are called
“useless”. One such case can be seen when optimising a neural network controller
with a sparsity criteria where many weights are set as zero: all variables linked
to neurons with those weights have no impact on the fitness function. More
importantly, this phenomenon can be seen in parameter estimation problems or
in genetic programming where many variables may be useless due to some other
variables. Typically, many parts of a program evolved by genetic programming
are not used [2] and all variables related to these parts have no impact whatsoever
on the fitness function and are difficult to find [29, 37, 12, 11, 5]. In fact, [27, 38]
showed that removing these unused parts can be harmful. The same thing can
be observed in reinforcement learning [41, 33, 25], evolution of trees [44], Nash
equilibrium [39] or Support Vector Machines [16]. [32] also mentions very flat

253

2 Vincent Berthier, Olivier Teytaud

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

sphere,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

-10

10
-5

10
0

10
5

10
10

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

ellipsoid,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

rastrigin,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

bucherastrigin,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

linear,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

-2

10
0

10
2

10
4

10
6

10
8

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

asfunction,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

sellipsoid,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

rosenbrock,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

rosenbrockR,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

ellipsoidR,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

-2

10
0

10
2

10
4

10
6

10
8

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

discusR,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

bentcigarR,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO

Fig. 1. Expected fitness value w.r.t computation time, for functions f1 to f12 in Bbob,
respectively, in the case of 100 useless variables. A zoomable and colored version is
available at http://www.lri.fr/~teytaud/uv.pdf.

directions as a key point in some optimisation problems. An important question
is then to know how and when those useless variables impact the optimisation
process, and if it is possible to overcome it.

Notations.We here introduce some notations that will be used throughout
this paper. d is the dimension of the search space; we consider optimisation in
D = (0, 1)d. m is the codimension of the set of optima, ie. m = d− u where u is
the dimensionof the set of optima. x∗ is an optimum of the objective function.
The objective function, also known as fitness function, is f : D → R. Õ denotes
an upper bound within polylogarithmic factors.

254

On the codimension of the set of optima 3

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

srfunctionR,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

-6

10
-4

10
-2

10
0

10
2

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

diffpowR,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

rastriginmm,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

weierstrass,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

-1

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

schaffers,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

schaffersmic,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO

10
-1

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

compositeGRFSF2,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

schwefel,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

gallagher101,d40,100

1+1
SAiso

SA
SAcov

CMA
CMSA

NM
DE

PSO

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

gallagher21,d40,100

1+1
SAiso

SA
SAcov

CMA
CMSA

NM
DE

PSO
10

-1

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

katsuura,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO
10

2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
v
.

f
i
t
n
e
s
s

time (s)

lunacekbir,d40,100

1+1
SAiso

SA
CMA

CMSA
NM
DE

PSO

Fig. 2. Expected fitness value w.r.t computation time, for functions f13 to f24 in Bbob,
respectively, in the case of 100 useless variables. A zoomable and colored version is
available at http://www.lri.fr/~teytaud/uv.pdf. Confidence intervals are displayed
for one point out of four; they are very small and almost invisible.

Impact of useless variables on algorithms initialisation. Some opti-
misers have a population size linear in the number of variables: Newuoa [32]
generates an initial population of size 2d + 1. Newuoa uses this population for
building a first approximation of the Hessian. Nelder-Mead generates an initial
population of size d + 1. Only when this initial population is generated, points
which depend on the fitness values are generated based on the ranking of this
initial population. Finite-differences methods will generate an initial population
of size d+ 1 for estimating the gradient. For those optimisers, we can easily see
that a small number of useless variables is not an issue, but it soon becomes

255

4 Vincent Berthier, Olivier Teytaud

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

sphere,d40,10000

1+1
SAiso

SA
DE

PSO
10

-10

10
-5

10
0

10
5

10
10

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

ellipsoid,d40,10000

1+1
SAiso

SA
DE

PSO
10

2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

rastrigin,d40,10000

1+1
SAiso

SA
DE

PSO

10
2

10
3

10
4

10
5

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

bucherastrigin,d40,10000

1+1
SAiso

SA
DE

PSO
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

linear,d40,10000

1+1
SAiso

SA
DE

PSO
10

-2

10
0

10
2

10
4

10
6

10
8

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

asfunction,d40,10000

1+1
SAiso

SA
DE

PSO

10
0

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

sellipsoid,d40,10000

1+1
SAiso

SA
DE

PSO
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

rosenbrock,d40,10000

1+1
SAiso

SA
DE

PSO
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

rosenbrockR,d40,10000

1+1
SAiso

SA
DE

PSO

10
3

10
4

10
5

10
6

10
7

10
8

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

ellipsoidR,d40,10000

1+1
SAiso

SA
DE

PSO
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

discusR,d40,10000

1+1
SAiso

SA
DE

PSO
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

bentcigarR,d40,10000

1+1
SAiso

SA
DE

PSO

Fig. 3. Expected fitness value w.r.t computation time, for functions f1 to f12 in Bbob,
respectively, in the case of 10000 useless variables. A zoomable and colored version is
available at http://www.lri.fr/~teytaud/uv.pdf.

one as their number increases. In practice it is often unfeasable: a population
of one million individuals of one million double variables requires 16 tera-bytes
of RAM (depending on double precision on the considered system). Many Evo-
lution Strategies have a dimension-independent population size, or at worse a
logarithmically increasing one. However, those that rely on covariance matrix
adaptation (eg. CMA-ES, CMSA-ES, etc.) suffer from the same kind of prob-
lem: at some point, the ressources needed to store this matrix become insufficient.
Other algorithms, not suffering from either of those problems, can be said to be
robust w.r.t. useless variables.

256

On the codimension of the set of optima 5

10
0

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

srfunctionR,d40,10000

1+1
SAiso

SA
DE

PSO
10

-6

10
-4

10
-2

10
0

10
2

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

diffpowR,d40,10000

1+1
SAiso

SA
DE

PSO
10

2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

rastriginmm,d40,10000

1+1
SAiso

SA
DE

PSO

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

a
v
.

f
i
t
n
e
s
s

time (s)

weierstrass,d40,10000

1+1
SAiso

SA
NM
DE

PSO
10

-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

schaffers,d40,10000

1+1
SAiso

SA
DE

PSO
10

0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

schaffersmic,d40,10000

1+1
SAiso

SA
DE

PSO

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

compositeGRFSF2,d40,10000

1+1
SAiso

SA
DE

PSO
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

schwefel,d40,10000

1+1
SAiso

SA
DE

PSO
10

0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

gallagher101,d40,10000

1+1
SAiso

SA
DE

PSO

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

gallagher21,d40,10000

1+1
SAiso

SA
DE

PSO
10

0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

a
v
.

f
i
t
n
e
s
s

time (s)

katsuura,d40,10000

1+1
SAiso

SA
NM
DE

PSO
10

2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

a
v
.

f
i
t
n
e
s
s

time (s)

lunacekbir,d40,10000

1+1
SAiso

SA
DE

PSO

Fig. 4. Expected fitness value w.r.t computation time, for functions f13 to f24 in Bbob,
respectively, in the case of 10000 useless variables. A zoomable and colored version is
available at http://www.lri.fr/~teytaud/uv.pdf.

Runtimes in the presence of useless variables. When assessing the per-
formances of an optimiser, two measures can be used. The first and arguably
most used one is to compare them by the number of function evaluations re-
quired to reach the optimum. As it is independant of implementation, it is easier
to use. However, there are huge gaps between the “internal costs” of different
optimisation algorithms: this cost can be very high for algorithms based on co-
variance matrix adaptation. In fact, it can be so high that those algorithms are
unable to deal with problems of dimension 10’000 or more. On the other hand,
some algorithms (eg. Differential Evolution, Particle Swarm Optimisation, etc.)
can be used with a hundred times more variables without problem.

257

6 Vincent Berthier, Olivier Teytaud

The second possible measure is to compare algorithms on their runtimes:
in some cases, the number of function evaluations is not important, as long
as we can get the result fast. This however is a difficult measure to use: it is
implementation dependent, making indirect comparisons (eg. from two different
papers) at best suspect; it does not make any difference between the time needed
to perform a function evaluation, and the time needed by the algorithm itself.
In most cases, the later is supposed negligible compared to the former. With a
high number of variables, this assumption does not hold anymore in some cases:
CMSA-ES and CMA-ES which need to compute the eigen values and eigen
vectors of the covariance matrix require a lot of time, far more than necessary
for a function evaluation.

2 Theoretical analysis: impact of the codimension on the
required number of function evaluations

We first summarize the state of the art.We then study lower bounds (Section
2.1) and upper bounds (Section 2.2). We first discuss the case of a codimension
m equal to the dimension d, ie. the set of optima has dimension 0 - for example
a single optimum. Sections 2.1 and 2.2 will discuss the extension of these results
to codimension m < d. [14] has shown that the number of function comparisons
for finding the optimum with precision ε is Θ(d log(1/ε)) for algorithms based
on comparisons. The upper bound is for some specific comparison-based algo-
rithm on the sphere function and the lower bound is in the case of any family
of functions with unique optimum, when the optimum can be anywhere in the
domain (optimum uniformly randomly drawn in the domain, or worst case over
optima in the domain), and for a precision (stopping criterion) defined either
in terms of distance to the optimum, or in terms of fitness values, if the fitness
values f(x) − f(x∗) = Ω(||x − x∗||α) for some α > 0. These results are based
on information theory. Basically, a comparison provides one bit of information,
so if we need a precision such that the optimum should be described with M
digits (in binary), we need M comparisons. More generally, a ranking of λ off-
spring provides at most log2(λ!) bits of information, and detailed results for
algorithms using a selection operator of µ individuals over λ can be derived in a
similar manner. [24] obtained a more general result (including various models
of noise), at the expense of a different dependency in ε; they get: (i) a lower
bound on the number of comparisons Ω(d log(1/ε)) on the number of iterations
before reaching an expected precision ε. (ii) an upper bound on the number of
comparisons O(d log(1/ε)2) on the number of comparisons before reaching an
expected precision ε, reached by an explicit algorithm.

2.1 Lower bound

The lower bound in [14] can be adapted to our setting as follows:
Theorem 1 (corollary of [14]): Consider a fixed δ < 1. Consider the

function fx∗,R,d,m : x 7→ ∑m
i=1(R(x − x∗))2i where R is a rotation of Rd and

258

On the codimension of the set of optima 7

x∗ ∈ D. Consider Fm the set of such functions. Consider a comparison-based
algorithm A. Then, there is a universal constant K (depending on δ only), such
that if for all functions in Fm, with probability at least 1− δ, A outputs x̂ such
that ||x̂− x∗|| ≤ ε after n comparisons, then

n ≥ K ×m× log(1/ε).

Proof: Consider F ′m,d the restriction of Fm,d to the identity matrix for

R. Consider the optimisation in (0, 1)d × {0}d−m. Then by [14], the number n
ensuring precision ε is at least K×m× log(1/ε), for some universal K depending
on δ only. F ′m ⊂ Fm, hence a lower bound for F ′m also holds for Fm. This yields
the expected result.

2.2 Upper bound

The result from [24], for the upper bound and in the noise-free case, is as follows:
Theorem 2 (corollary of [24]): Consider a fixed δ < 1. Consider the

function fx∗,R,d,m : x 7→ ∑m
i=1(R(x − x∗))2i where R is a rotation of Rd and

x∗ ∈ D. Consider Fm,d the set of such functions, for a given d and a given m.
Then, there is a universal constant K (depending on δ only) and an optimisation
algorithm A, such that for all functions in Fm,d, with probability at least 1− δ,
A outputs x̂ such that ||x̂− x∗|| ≤ ε after n comparisons, where

n = dK ×m× Õ(log(1/ε)2)e. (1)

Proof: The algorithm in [24] uses coordinate-wise line search, which can not
be applied directly for our rotated framework. However, as pointed out in [24]
(Section 5.1: “ an analysis with the same result can be obtained with [...] chosen
uniformly from the unit sphere”), the same result holds with randomly rotated
search directions. The algorithm with randomly rotated search direction applied
to fx∗,R,d,m exactly mimics the behavior of the algorithm on fx∗,R,m,0. This
yields the expected result.

We point out that evolution strategies (usually) also have this invariance
property. However, we did not use evolution strategies in the proof because
there is no formal proof of convergence of evolution strategies. Nonetheless, [1]
is close to such a result for evolution strategies (up to the sign of the constant),
Theorem 2 shows an upper bound for comparison-based methods, and there is a
big hope that Theorem 2 could be adapted to evolution strategies if the constant
in [1] is proved negative.

The gap with the lower bound is the exponent 2 on log(1
ε) in Eq. 1. We

do not reduce the gap in the general case, but we propose the following partial
result, using F ′′m,d = {fx∗,R,d,m;∀ix∗i 6= 0, R has all coefficients in {0, 1}}.

Theorem 3: Consider a fixed δ < 1. Consider the family F ′′m,d of objective
functions. Then, there is a universal constant K (depending on δ only) and

259

8 Vincent Berthier, Olivier Teytaud

an optimisation algorithm A, using the parameter m as input, such that for all
functions in Fm,d, with probability at least 1−δ, for ε sufficiently small, A outputs
x̂ such that ||x̂−x∗|| ≤ ε after n comparisons, where n = dK×m×O(log(1/ε)).e

Remarks: We prove the upper bound for permutations of coordinates, and
not for the complete set of rotations. We assume that m is known; we conjecture
that this assumption can be removed. The result is for ε sufficiently small.

Proof:
Step 1: consider many algorithms. Consider I = {(i1, . . . , im) ∈

{1, . . . , d}m; i1 < i2 < · · · < im}. The cardinal of I is z = d!/(m!(d − m)!).
For each i, consider the algorithm Ai realizing the upper bound in [14] with
probability 1−δ/(3z), for some number of function evaluations w, for any sphere
function restricted to m components i = (i1, . . . , im). By union bound, all the
algorithms reach this bound, with probability at least 1− δ/3.

Step 2: a portfolio of algorithms, and algorithm selection. Consider
now the algorithm A running all the Ai concurrently, in a round. However, the
algorithm spends half his computational effort on the Ai which has found the
best point up to now, and distributes the remaining computational power evenly
over the other Aj . So a round of A is as follows:

(i) Spend one function evaluation on each Aj , j ∈ I. This costs z function
evaluations.

(ii) Spend z function evaluations on the Aj∗ , with j∗ the index of the algo-
rithm which has proposed the best search point (randomly break ties).

The overall algorithm repeats (i) and (ii) up to the available budget.
Step 3: eventually, only the right algorithm is selected. Consider the

solver Ak∗ where k∗ is the family of the R−1(ej) for j ≤ m. Only this solver,
among the Aj , can converge to the optimum. Hence, for ε′ sufficiently small, Ak∗
always wins the comparison after it reaches optimality within precision ε′. The
upper bound states that such a precision is reached with probability at least
1− δ/3 when the number of rounds is at least w.

When this precision ε′ is reached, j∗ = k∗, and from now on Ak∗ spends half
of the computation budget.

Step 4: the budget. We have seen that Ak
∗

spends half of the computation
budget, except possibly for the early rounds (before reaching precision ε′, see
step 3). Let us now show that Ak

∗
spends one fourth of the whole computation

budget, when the requested precision is small enough.
Let us choose ε < ε′ such that the required number of rounds for Ak∗ to

reach precision ε with probability at least 1− δ/3 is at least twice more (i.e. 2w)
than the budget w.Such an ε exists by the lower bound. With probability 1− δ,
when Ak∗ reaches such a precision ε,

– the overall number of rounds is at least 2w (by the use of the lower bound,
above);

– and during the second half of these ≥ 2w rounds at least one half of the
evaluations have been spent for Ak∗ (by Step 3).

Therefore it has spent at least one fourth of the budget when this number of
rounds 2w is reached.

260

On the codimension of the set of optima 9

Step 5: concluding. With probability at least 1 − 2δ/3, one fourth of the
budget has been devoted to Ak∗ when the number of rounds is ≥ 2w. With
probability at least 1− δ/3, Ak∗ has the rate provided by the upper bound. This
provides the expected result.

3 Algorithms & their invariances

Section 3.1 discusses invariance in optimisation algorithms. Section 3.2 presents
the optimisation algorithms we consider.

3.1 Old and new invariances

Invariance is a classical consideration in optimisation. Let us distinguish several
kinds of invariance (the fifth one is a new kind of invariance in which we are
particularly interested in the present paper): (i) Invariance w.r.t. translations is
hard to achieve, due to the initialisation; a probability distribution for the initial
search point(s) can not be translation invariant. However, up to the initialisation
issue, many algorithms are invariant by translations of the objective function.
It is sufficient to prove lower bounds for evolution strategies [23, 22]. (ii) Invari-
ance by composition with increasing functions is at the heart of extensions of
these lower bounds to a more general setting, using information theory [14] -
basically, a comparison can provide only one bit of information, hence there is
a limited rate for comparison-based algorithms. (iii) Invariance w.r.t. rotations
does not always hold, as discussed below for various algorithms. Most algorithms
are invariant w.r.t. permutations of indices. Anisotropic evolution strategies [3]
provide invariance w.r.t. rescaling of variables (up to the initialisation), but not
w.r.t rotations. (iv) Invariance w.r.t. linear transformation (not only rotations)
is addressed in e.g. the Newton method in mathematical programming. It is ap-
proximated without expensive computation of the Hessian in the BFGS [8, 13, 17,
35] method. Up to the initialisation, black-box counterparts of the quasi-Newton
methods ensure similar invariances [32]. In the field of evolution strategies, the
most well known methods which ensure invariance w.r.t. linear transformations
are CMAES [19] and CMSA [4] both providing invariance with respect to rota-
tions.

(v) This paper discusses another kind of invariance: the fact that an algo-
rithm is invariant w.r.t. addition of useless variables. An algorithm is said to be
invariant w.r.t. addition of useless variables if this addition has no impact on
the performances of the algorithm: the best obtained fitness with and without
useless variable is the same, and it is reached after the same number of function
evaluations.

3.2 Algorithms used in our experiments, and their invariances

Parameters used for the nine algorithms in our comparison are (with d as the
dimension presented below.

261

10 Vincent Berthier, Olivier Teytaud

The optimisation algorithm classically associated to our chosen testbed,
namely BBOB, is CMAES [19]. We use population size λ = 4 + 3 log(d), parent
population size µ = λ/2. CMAES has some invariance properties w.r.t. rotations
and translations [20], except (as most algorithms) for the initialisation which,
as discussed above, can not be translation invariant. CMAES is asymptotically
invariant by rescaling of variables. On the other hand, CMAES is not invariant
by addition of useless variables.

We use a Self-adaptive evolution strategy, SA [3]. It uses isotropic mutations,
with population size λ = 12 and parent population size µ = 3. The mutation
rate for step-sizes is τ = 1/

√
2d. We also consider an anisotropic variation of

SA [3], with the same parameters and an added step-size mutation rate for each

variable τlocal = 1+d(d+1)
6 . It is not invariant by rotation. It is invariant for

rescaling of variables, up to the initialisation. We also use Covariance Matrix
Self-Adaptation, CMSA [4] with the same configuration as anisotropic SA-ES,

and a learning rate for the covariance matrix τC = 1+d(d+1)
2µ . CMSA has the same

kind of invariances as CMAES. CMSA is the extension of SA for invariance w.r.t.
rotations. The computational cost of CMSA is higher than the one of SA. As
CMAES, it is not invariant by addition of useless variables. Another form of
covariance learning was proposed in [34], SA with covariance. The configuration
is the same as anisotropic SA-ES, with an added parameter β = 0.0873 for
covariance matrix update. Invariant for all invariance criteria discussed here.
Yet another algorithm is Differential evolution DE [40]; we use population size
30, DE/Curr-to-best/1, Cr = .5, F1 = F2 = .8. DE and combinations of DE
algorithms won many competitions in evolutionary computation [10]. Invariant
for all invariance criteria discussed here when Cr = 1; but not w.r.t rotations
when Cr < 1. We also use the old and efficient one plus one evolution strategy
with one-fifth success rate, (1 + 1)-ES [34], step-size multiplied by 1.5 in case of
success and divided by 1.50.25 otherwise. Invariant for all invariance criterium
discussed here. Nelder-Mead [30], which has the same kind of invariances w.r.t.
rotations and translations as CMAES and CMSA. Its parameters are α = 1,
γ = 2, rho = −0.5 and σ = 0.5. Finally, we use Particle Swarm Optimisation
PSO [26, 36]. We use a population size 30, a social neighbourhood of size 10,
ω = 1/2 log(2), φg = φp = 1

2 + log(2), initial velocity 3
4 and maximum velocity

3
2 . This parametrization is a compromise between some works for defining a
standard PSO [43, 9, 6]. PSO is not invariant for rotations [21]. For all algorithms,
the initialisation is as follows. Each coordinate of each individual is randomly
drawn according to a Gaussian random variable with zero mean and standard
deviation 6.

4 Experiments

Test cases & criteria.We use the functions from the BBOB test set, and
perform experiments with additional useless variables, ie. we have codimension
m = 40, and dimension d = m + u with u = 100, 1000000 useless variables.
Other experiments have been performed with m = 2, 3, 4, 5, 8, 10, 16, 20, 32, 64,

262

On the codimension of the set of optima 11

and also with u = 10000; results were in agreement with results presented below
with m = 40 and u ∈ {100, 10000}. We consider the expected fitness value (y-
axis; the fitness at the optimum is substracted as all our algorithms are invariant
by addition of a constant to the optimum), for given computation times (x-axis).
The x-axis is computation time, because for large number of variables the inter-
nal computation time of considered algorithms is not negligible. In fact, many
algorithms could not run at all with such high dimension. We did not permute
coordinates, so that the useless variables are always the last ones. However, all
considered algorithms are invariant by permutation of variables, so that this is
not an issue.

Results.In all results, confidence intervals are presented for one point out of
four; they are almost invisible because they are very small. Results are presented
in Fig. 1, 2 for 100 useless variables, and in Fig. 3, 4 for 10000 useless variables.
Roughly speaking, many algorithms can compete for dimension 140 (codimen-
sion 40, 100 useless variables), though the simple (1 + 1)-ES and DE perform
best overall (recall that we consider time on the x-axis, and not the number of
evaluations). With 10000 useless variables, only fast algorithms (DE/SA/SAiso)
can compete; DE performs best in case of ill-conditioning; SA performs well in
case of ill-conditioning and no rotation. Algorithms which are not presented in
the comparison are those who could not provide results in the given time limit.

5 Conclusion

This paper emphasises useless variables as a key for understanding the practi-
cal behavior of evolutionary algorithms on high dimensional problems. On the
theoretical side, we extend known runtime analysis from the case of a set of
optima with dimension 0 to a set of optima with dimension > 0, leading to a
codimension m possibly much lower than the dimension d. The lower bound ex-
tends the known lower bound, from dimension = codimension to more general
cases. The upper bound holds for permutation of coordinates and not for the
whole family of rotations (Theorem 3), or, in the case of full rotations, with
a quadratic dependency in the log-precision (Theorem 2). Pratically speaking,
whereas many methods rely on a linear number of function evaluations (typically
just for the initialisation), evolutionary algorithms use a logarithmic or constant
initial population size. In addition, an algorithm such as DE or SA or SAaniso
or the simple (1 + 1)-ES will just ignore unimportant variables and optimize the
remaining ones. Therefore, evolutionary algorithms can handle very large prob-
lems, provided that the problem has a a special structure - in particular, when
many variables are useless; and this is far from being trivial as some state of the
art optimisation methods such as Newuoa, CMAES or CMSA can not do that. In
fact, a more general case might be true - when, up to a rotation, many variables
are useless; in particular, DE is invariant by rotation when cross-over is disabled
(ie. Cr=0), and (1+1)-ES is invariant by rotation, so that rotations of problems
with many useless variables can be tackled. Importantly, rotations of problems
with useless variables are not problems with useless variables - therefore, our re-

263

12 Vincent Berthier, Olivier Teytaud

sults show that some high-dimensional problems can be tackled whenever they
have no useless variables, but are rotations of problems with useless variables.
Experimentally, we successfully optimized BBOB functions with up to a million
of useless variables. Unsurprisingly, for algorithms which are invariant w.r.t. use-
less variables, the best fitness for a given number of evaluations is exactly the
same as with no useless variables. On the other hand, results become worse for
algorithms which do not have this invariance and can even become impossible
to obtain in a timely fashion due to computation time constraints.

Further work. (a) On the mathematical side, we conjecture that Theorem
3 also holds with Fm instead of F ′′m, ie. with full rotations and not only with
permutations of coordinates. (b) On the experimental side, we might study the
same question empirically: what happens with random rotations of the BBOB
testbed embedded in a large set of useless coordinates. For algorithms which are
invariant per rotation (not DE, not PSO) this does not make any difference. (c)
Adaptive methods for choosing parameters might be tested for PSO or DE [42,
28, 31, 7] as they could maybe handle better the extreme size of our problems.
(d) We tested the addition of completely useless variables. In fact, since full
separability and fully rotated problems are extreme cases, we might consider
variables with very low but not zero impact. We might use tricks similar to
those used in the Cute testbed for partial separability [18]. (e) Recently, an
effort has been made for developping real world test functions in the evolutionary
computation community [15]. This provides an example of test case in which the
real world decided the level of separability and the level of useless variables in a
test case. Extended [15] to a high dimension case might be a good experiment.

References

1. Auger, A.: Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible
markov chains. Theoretical Computer Science 334, 35–69 (2005)

2. Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. Genetic
Programming and Evolvable Machines 3(1), 81–91 (2002)

3. Beyer, H.G.: The Theory of Evolution Strategies. Natural Computing Series,
Springer, Heideberg (2001)

4. Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited - the CMSA
evolution strategy. In: Rudolph, G., Jansen, T., Lucas, S.M., Poloni, C., Beume,
N. (eds.) Proceedings of PPSN. pp. 123–132 (2008)

5. Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming:
Reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolutionary
Computation CEC2001. pp. 536–543. IEEE Press, COEX, World Trade Center,
159 Samseong-dong, Gangnam-gu, Seoul, Korea (27-30 2001), citeseer.ist.psu.
edu/bleuler01multiobjective.html

6. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
IEEE Swarm Intelligence Symposium. pp. 120–127 (2007), http://dx.doi.org/
10.1109/SIS.2007.368035

7. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. Evolutionary Computation, IEEE Transactions on 10(6), 646–657 (2006)

264

On the codimension of the set of optima 13

8. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms
2. The New Algorithm. J. of the Inst. for Math. and Applications 6, 222–231 (1970)

9. Clerc, M.: Beyond standard particle swarm optimisation. IJSIR 1(4), 46–61 (2010),
http://dblp.uni-trier.de/db/journals/ijsir/ijsir1.html#Clerc10

10. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art.
IEEE Trans. on Evolutionary Computation 15(1), 4–31 (2011)

11. De Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diver-
sity using multi-objective methods. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO-2001. pp. 11–18. Morgan Kaufmann Pub-
lishers, San Francisco, CA (2001), citeseer.ist.psu.edu/dejong01reducing.

html

12. Ekart, A., Nemeth, S.: Maintaining the diversity of genetic programs. In: EuroGP
’02: Proceedings of the 5th European Conference on Genetic Programming. pp.
162–171. Springer-Verlag, London, UK (2002)

13. Fletcher, R.: A new approach to variable-metric algorithms. Computer Journal 13,
317–322 (1970)

14. Fournier, H., Teytaud, O.: Lower Bounds for Comparison Based Evolution Strate-
gies using VC-dimension and Sign Patterns. Algorithmica (2010), http://hal.

inria.fr/inria-00452791

15. Gallagher, M.: Clustering problems for more useful benchmarking of optimiza-
tion algorithms. In: Dick, G., Browne, W.N., Whigham, P., Zhang, M., Bui, L.T.,
Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K.C., Tang, K. (eds.) Simu-
lated Evolution and Learning, pp. 131–142. No. 8886 in Lecture Notes in Computer
Science, Springer International Publishing (Jan 2014), http://link.springer.

com/chapter/10.1007/978-3-319-13563-2_12

16. Girosi, F.: An equivalence between sparse approximation and support vector ma-
chines. In: Proc. NIPS 10. pp. 1455–1480. Morgan Kaufmann (1998)

17. Goldfarb, D.: A family of variable-metric algorithms derived by variational means.
Mathematics of Computation 24, 23–26 (1970)

18. Gould, N.I.M., Orban, D., Toint, P.L.: Cuter and sifdec: A constrained and uncon-
strained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394
(2003)

19. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 11(1) (2003)

20. Hansen, N.: Adaptive Encoding for Optimization. Research Report RR-6518, IN-
RIA (2008), http://hal.inria.fr/inria-00275983/en/

21. Hansen, N., Ros, R., Mauny, N., Schoenauer, M., Auger, A.: PSO Facing Non-
Separable and Ill-Conditioned Problems. Research Report RR-6447, INRIA (2008),
http://hal.inria.fr/inria-00250078/en/

22. Jagerskupper, J.: In between progress rate and stochastic convergence. Dagstuhl’s
seminar (2006)

23. Jagerskupper, J., Witt, C.: Runtime analysis of a (mu+1)es for the sphere function.
Tech. rep. (2005)

24. Jamieson, K.G., Nowak, R.D., Recht, B.: Query complexity of derivative-free op-
timization. In: NIPS. pp. 2681–2689 (2012)

25. Kearns, M., Mansour, Y., Ng, A.: A sparse sampling algorithm for near-optimal
planning in large markov decision processes. In: IJCAI. pp. 1324–1231 (1999),
citeseer.ist.psu.edu/kearns99sparse.html

26. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks. pp. 1942–1948 (1995)

265

14 Vincent Berthier, Olivier Teytaud

27. Langdon, W.B., Poli, R.: Fitness causes bloat: Mutation. In: Koza, J. (ed.) Late
Breaking Papers at GP’97. pp. 132–140. Stanford Bookstore (1997)

28. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Com-
puting 9(6), 448–462 (2005)

29. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evolutionary Computation 14(3), 309–344 (2006)

30. Nelder, J., Mead, R.: A simplex method for function minimization. Computer
Journal 7 pp. 308–311 (1965)

31. Poáık, P., Klema, V.: Jade, an adaptive differential evolution algorithm, bench-
marked on the bbob noiseless testbed. In: Proceedings of the fourteenth interna-
tional conference on Genetic and evolutionary computation conference companion.
pp. 197–204. ACM (2012)

32. Powell, M.J.D.: Developments of newuoa for minimization without derivatives.
IMA J Numer Anal pp. drm047+ (February 2008), http://dx.doi.org/10.1093/
imanum/drm047

33. Ratitch, B., Precup, D.: Sparse distributed memories for on-line value-based rein-
forcement learning. In: ECML 2004: 347-358 (2004)

34. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart
(1973)

35. Shanno, D.F.: Conditioning of quasi-newton methods for function minimization.
Mathematics of Computation 24, 647–656 (1970)

36. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings
of IEEE International Conference on Evolutionary Computation. pp. 69–73. IEEE
Computer Society, Washington, DC, USA (May 1998)

37. Silva, S., Costa, E.: Dynamic limits for bloat control: Variations on size and depth.
In: GECCO (2). pp. 666–677 (2004)

38. Soule, T.: Exons and code growth in genetic programming. In: et al., J.A.F. (ed.)
EuroGP 2002. LNCS, vol. 2278, pp. 142–151. Springer-Verlag (2002)

39. St-Pierre, D., Louveaux, Q., Teytaud, O.: Online sparse bandit for card game.
In: Proceedings of Advanced in Computer Games 2011 (ACG 2011). pp. 295–305
(2011)

40. Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for
global optimization over continuous spaces. J. of Global Optimization 11(4), 341–
359 (Dec 1997), http://dx.doi.org/10.1023/A:1008202821328

41. Sutton, R.: Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.)
Advances in Neural Information Processing Systems. vol. 8, pp. 1038–1044. The
MIT Press (1996), citeseer.ist.psu.edu/sutton96generalization.html

42. Yu, W.J., Zhang, J.: Multi-population differential evolution with adaptive parame-
ter control for global optimization. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation. pp. 1093–1098. GECCO ’11, ACM,
New York, NY, USA (2011), http://doi.acm.org/10.1145/2001576.2001724

43. Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm opti-
misation 2011 at cec-2013: A baseline for future pso improvements. In: IEEE
Congress on Evolutionary Computation. pp. 2337–2344. IEEE (2013), http:

//dblp.uni-trier.de/db/conf/cec/cec2013.html#Zambrano-BigiariniCR13

44. Zhang, B.T., Ohm, P., Mühlenbein, H.: Evolutionary induction of sparse neural
trees. Evolutionary Computation 5(2), 213–236 (1997)

266

Short Papers - Poster Presentations

267

Evolutionary Cutting Planes

Jérémie Decock, David L. Saint-Pierre, Olivier Teytaud

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud)
Bat 660 Claude Shannon Univ. Paris-Sud, 91190 Gif-sur-Yvette, France

Email: {firstname.lastname}@inria.fr

Abstract. The Cutting Plane method is a simple and efficient method
for optimizing convex functions in which subgradients are available. This
paper proposes several methods for parallelizing it, in particular using a
typically evolutionary method, and compares them experimentally in a
well-conditioned and ill-conditioned settings.

1 Introduction

Various information levels can help for optimization: the objective function val-
ues are usually available; sometimes, the gradient is also provided[3], and in some
cases the Hessian is available (either directly, in Newton’s method, or approxi-
mated by successive gradients, as in quasi-Newton methods[2, 4, 6, 14]; there are
also cases in which both the gradient and Hessian are approximated by objec-
tive function values without direct computations[13]). We here consider cases in
which we have access to subgradients.

A traditional method for cases in which subgradients are available is the
cutting-plane method[8]: at each search point xn, a linear approximation of the
objective function f , tangent to f at xn, is computed1; this linear approximation
is termed a cut c. This cutting-plane method assumes that the objective function
f is convex, so that the cuts are all below f . The f̃n function – corresponding
to the maximum of cuts {c1, ..., cn} computed in previous iterations {1, ..., n}
– can therefore be used as an heuristic. Thus, f̃ is an approximate model of
the objective function and it determines the search point of the next iteration
n + 1: xn+1 = arg minx f̃n. As f̃ is piecewise linear, arg minx f̃n can be quickly
computed using linear programming solvers.

The parallelization of optimization algorithms is critical for many applica-
tions. To the best of our knowledge, whereas many methods using linear cuts
have been parallelized (e.g. dual dynamic programming[12]), there is no pub-
lished work on parallel cutting plane methods.

In this paper we propose variants of parallel cutting plane methods. We anal-
yse these variant to validate the approach both theoretically and experimentally.
Section 2 formalizes the problem. Section 3 introduces several parallel cutting
plane methods. Section 4 provides experimental results.

1 This cutting-plane method is not the one which is used in integer linear programming
but the version for continuous non-linear optimization with gradients.

268

2 Problem Statement

Let f : C ⊆ Rd → R be a convex function with domain C, where d is the
dimension of the problem. The generic problem at hand is defined by

min f(x) , subject to x ∈ C,

where C is a convex set. Assuming that we have access, for a given x, to both
f(x) and a subgradient ∇fx, then the cutting plane method can be defined as
follow for the iteration n ∈ {0, 1, 2, . . . }:

xn+1 = arg min
x

f̃n , (1)

cn+1 = x 7→ cn+1(x) = f(xn+1) +∇fxn+1 .(x− xn+1) , (2)

f̃n+1 = max(f̃n, cn+1) , (3)

where f̃0 is some heuristic, and where Eq. (1) defines the sequence x1,x2, . . . ,xn

of search points. Eq. (2) defines the cuts, i.e. linear functions tangent to the objec-
tive function f . Eq. (3) defines the sequence of approximate models f̃1, f̃2, . . . , f̃n.
f̃0 can be −∞ or some heuristically defined functions. However, if f̃0 can be en-
coded in linear programming, then Eq. (1) can be solved by linear programming
for any n ≥ 0. Usually x1 is randomly drawn in C if f̃0 is a constant function.

3 Parallel cutting plane methods

The classic cutting plane method is a sequential approach that generates only
one cut per iteration n. The idea put forth in this paper is to generate several
per iteration. Assuming we have access p processors, then we can potentially
generate p cuts per iteration. In this section, we define parallel cutting plane
(PCP) methods. First Section 3.1 describes a naive parallelization of the cutting
plane method. Then Section 3.2 explains a gaussian approach, using random
perturbation; a variant is also proposed. Third, Section 3.3 explains the billard
method to generate the cuts and also develops a variant.

3.1 Regular PCP

The idea of a naive parallelization of the cutting plane method is to evaluate
several points between xn and xn+1 rather than only xn+1. For some constant
C > 0, we define a regular PCP as follows for the iteration n ∈ {0, 1, 2, . . . }:

xn+1 = arg min
x

f̃n(x) , (4)

∀i ∈ {1, . . . , p},xn+1,i = xn +

(
C

i

p

)
(xn+1 − xn) , (5)

cn+1,i = x 7→ cn+1,i(x) = f(xn+1,i) +∇fxn+1,i .(x− xn+1,i) , (6)

f̃n+1 = max(f̃n,max
i

cn+1,i) . (7)

269

where f̃0 is some heuristic. Obviously Eq.(6) can be computed in parallel. In
the worst case scenario the only cut of relevance is from the point xn+1 in which
case it boils down to the sequential cutting plane method. When C = 1, it means
that we evaluate cuts regularly distributed from xn to xn+1; this is termed the
regular PCP. When C > 1 (e.g. C = 2), we evaluate cuts also farther than xn+1;
this is termed extended regular (or e-regular in the following figures).

3.2 Gaussian PCP

Evolutionary algorithms are usually not the fastest optimization methods, but
they have advantages in terms of robustness and parallelization. Combining
cutting planes and evolutionary mutations is a natural idea for parallelizing
the cutting planes method. The naive PCP from Section 3.1 has the draw-
back that it generates points distributed along a line. We propose a gaussian
variant of the form N (µ,σ), where cuts are generated using µ = xn+1 and

σ = ||xn+1 −xn||/
√
d. Note the division by the square root of the dimension in

order to keep the distance normalized. As such we propose the following variant:

f̃0 = some heuristic (8)

xn+1 = arg min
x

f̃n(x) , (9)

xn+1,1 = xn+1 (10)

µ = xn+1 σ = ||xn+1 − xn||/
√
d (11)

∀i ∈ {2, . . . , p},xn+1,i = N (µ,σ) , (12)

∀i ∈ {2, . . . , p}, cn+1,i(x) = f(xn+1,i) +∇fxn+1,i .(x− xn+1,i) , (13)

f̃n+1 = max(fn,max
i

cn+1,i) (14)

Our aim is to have points less regularly distributed, hopefully with a better
diversity in the cuts. Admittedly, a drawback of this method is that points are
generated isotropically, which might be problematic for ill-conditioned prob-
lems.When the domain of f is constrained (C ⊂ Rd) Eq. 12 might draw some
points outside C; another instruction is then required to filter these wrong points.

Special-Gaussian PCP We here propose a “special” variant of the Gaussian
version above. The pseudo-code is the same, but µ and σ are such that the
Gaussian distribution is centered on the average µ = 1

2 (xn + xn+1) and σ =

||xn+1 − xn||/2
√
d.

3.3 Billiard PCP

In a convex setting, each (non-null) cut provide a half-space in which the opti-
mum lies. With multiple cuts, we have a polyhedron in which the optimum nec-
essarily lies. The billiard algorithm is a classical approach[10, 1, 7, 5] for sampling
a polyhedron. We apply it, here and get p−1 points xn,2, . . . ,xn,p approximately
uniformly distributed in the polyhedron. xn,1 is set to xn.

270

1 2 3 4 5

sphere (d=3 ; 15 iterations)

lo
g
(S

R
)

/
n

u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard
cheating

(a) Sphere

1 2 3 4 5

lo
g

(S
R

)
/

n
u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

-0.1

-0.2

-0.3

-0.4

-0.5

0

cigar (d=3 ; 15 iterations)
sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard
cheating

(b) Cigar

Fig. 1: Dimension d = 3, 15 iterations, p = 5. Comparison of Simple Regret
(SR) based on the number of processors p. Interpretation: for the sphere, s-
Billiard and s-Gaussian outperform the other variants when p > 3; for the cigar,
billiard and s-Billiard outperform the other variants when p > 3.

Special-billiard PCP The center of mass might be an interesting point; there-
fore, for this special billiard, we keep one point for the average of the xn,i for

i ∈ {2, . . . , p − 1}: xn,p = 1
p−2

∑p−1
i=2 xn,i. This method is inspired by [9, 11]. It

approximates the center of mass of the polyhedron of possible optima; a compu-
tationally faster method is also proposed in [15] (using an approximation of the
centre of gravity by the center of the biggest ellipsoid).

4 Experiments

In this section we compare 2 regular parallel cutting plane methods (C=1 and
C=1.5, from Section 3.1), 2 gaussian approaches (defined in Section 3.2) and
2 billiards methods from Section 3.3 to 2 baseline: sequential and cheat. The
sequential method is the vanilla version where there are no parallelization. The
cheat method can execute each cut in parallel as if it was in the sequential
scenario, thus showing the absolute best possible outcome.

Simple regret We consider in our results the Simple Regret (SR). The simple
regret of an optimization run is the difference f(x̂) − infx f(x), where x̂ is the
approximation of the optimum provided by the optimization algorithm at the
end of the optimization run.

Comparison We compare our methods, as a function of the number p of proces-
sors. For the sake of comparison, we include a “cheating” method. The cheating
method is in fact the sequential classical cutting-plane method, but with each
group of p iterations being considered as one iteration only. This is not a real
parallel method: it is cheating in the sense that processor #2 can use the result of
the computation of processor #1, and so on. It is just aimed at showing the ideal

271

1 2 3 4 5 6

lo
g
(S

R
)

/
n

u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

sphere (d=5 ; 50 iterations)

-0.15

-0.2

-0.25

-0.3

-0.35

-0.4

-0.45

-0.5

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard
cheating

(a) Sphere

1 2 3 4 5 6

lo
g

(S
R

)
/

n
u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

cigar (d=5 ; 50 iterations)
sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard
cheating

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

(b) Cigar

Fig. 2: Dimension d = 5, 50 iterations, p = 6. Comparison of Simple Regret
(SR) based on the number of processors p. Interpretation: for the sphere, Gaus-
sian and s-Gaussian outperform the other variants when p > 4; for the cigar,
billiard and s-Billiard outperform the other variants when p > 5.

case, i.e. the performance that would be obtained if we could fully parallelize the
cutting plane method so that p iterations on a sequential machine could be run
simultaneously on a machine with p processors. For the sake of comparison, we
also include a “sequential” method, in which we do not parallelize at all; only
one processor is used, so that this is indeed the sequential method.

We consider the sphere function f(x) = ||x||2 for x ∈ [0, 1]d, and the cigar

function f(x) = x2
1 + 103

∑i=d
i=2 x

2
i . All cutting plane methods start with a point

randomly uniformly drawn in {x ∈ Rd; ||x|| = 1}. Results are averaged over 20
runs; each point in each curve is computed independently, so that superiority
over each abscissa shows statistical significance.

Figure 1 explores the different variants with a fixed dimension d = 3, a
number of iterations n = 15 and a number of processors p = 5. For the sphere,
s-Billiard and s-Gaussian outperform the other variants when p > 3. For the
cigar, billiard and s-Billiard outperform the other variants when p > 3. Our
variants (s-Gaussian and s-Billiard) outperform their respective initial version
(respectively Gaussian and Billiard).

Figure 2 evaluates the different variants with a fixed dimension d = 5, a
number of iterations n = 50 and a number of processors p = 6. For the sphere,
Gaussian and s-Gaussian outperform the other variants when p > 4. For the
cigar, Billiard and s-Billiard outperform the other variants when p > 5. Once
again, our variants (s-Gaussian and s-Billiard) outperform their respective initial
version (respectively Gaussian and Billiard).

Figure 3 evaluates the different variants with a fixed dimension d = 10, a
number of iterations n = 100 and a number of processors p = 7. For the sphere,
Gaussian and s-Gaussian outperform the other variants when p > 4. For the
cigar, s-Gaussian and s-Billiard outperform the other variants when p > 5. Once
again, our variants (s-Gaussian and s-Billiard) outperform their respective initial
version (respectively Gaussian and Billiard).

272

1 2 3 4 5 6 7

lo
g
(S

R
)

/
n

u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

sphere (d=10 ; 100 iterations)

-0.05

-0.1

-0.15

-0.2

-0.25

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard
cheating

(a) Sphere

1 2 3 4 5 6 7

cigar (d=10 ; 100 iterations)

lo
g
(S

R
)

/
n

u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

0

-0.02

-0.04

-0.06

-0.08

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard
cheating

(b) Cigar

Fig. 3: Dimension d = 10, 100 iterations, p = 7. Comparison of Simple
Regret (SR) based on the number of processors p. Interpretation: for the sphere,
Gaussian and s-Gaussian outperform the other variants when p > 4; for the
cigar, s-Gaussian and s-Billiard outperform the other variants when p > 5.

Figure 4 presents the impact of the number of iterations upon the Simple
Regret (SR) for the 10 dimensions sphere and cigar objective functions. A good
variant typically would require a number of iteration as low as possible since
each iteration represents a sequential step. The s-Gaussian is clearly the best
variant when p > 4, whatever the number of iteration.

5 Conclusion

Our conclusions are as follows:

– The s-Billiard method is better than the billiard method. This is consistent
with the superiority of the ellipsoid method. This might make sense even in
the sequential case.

– Comparison between methods: the s-Gaussian method is the best method in
the well conditioned case (“sphere”). The s-Billiard method is the best only
in the ill-conditioned case (“cigar”) when the dimension is small.

– Speed-up: the speed-up is reasonably good; we have nearly a half or a third
of a linear speed-up (i.e. we need twice or three times more processors than
in the “cheating” case).

References

1. P. Baldwin. The billiard algorithm and ks entropy. Journal of Physics A: Mathe-
matical and General, 24(16):L941, 1991.

2. C. G. Broyden. The convergence of a class of double-rank minimization algorithms
2. The New Algorithm. J. of the Inst. for Math. and Applications, 6:222–231, 1970.

3. A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simul-
tanées. Compte-rendus hebdomadaires de l’académie des sciences, pages 536–538,
1847.

273

4. R. Fletcher. A new approach to variable-metric algorithms. Computer Journal,
13:317–322, 1970.

5. T. Gensane. Dense packings of equal spheres in a cube. the electronic journal of
combinatorics, 11(1):R33, 2004.

6. D. Goldfarb. A family of variable-metric algorithms derived by variational means.
Mathematics of Computation, 24:23–26, 1970.

7. R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines: Estimating the
bayes point in kernel space. In IJCAI Workshop SVMs, pages 23–27, 1999.

8. J. E. Kelley. The cutting plane method for solving convex programs. Journal of
the SIAM, 8:703–712, 1960.

9. A. Levin. An algorithm for the minimization of convex functions. Soviet Math.
Doklady, 6:286–290, 1965.

10. B. D. Lubachevsky. How to simulate billiards and similar systems. Journal of
Computational Physics, 94(2):255–283, 1991.

11. D. J. Newman. Location of the maximum on unimodal surfaces. 12(3):395–398,
July 1965.

12. M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied
to energy planning. Math. Program., 52(2):359–375, Oct. 1991.

13. M. J. D. Powell. Developments of newuoa for minimization without derivatives.
IMA J Numer Anal, pages drm047+, February 2008.

14. D. F. Shanno. Conditioning of quasi-newton methods for function minimization.
Mathematics of Computation, 24:647–656, 1970.

15. S. Tarasov, L. Khachiyan, and I. Erlikh. The method of inscribed ellipsoids. Soviet
Mathematics Doklady, 37(1):226–230, 1988.

274

1 2 3 4 5 6 7

sphere (d=10 ; 10 iterations)

lo
g
(S

R
)

/
n

u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

0

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

-0.4

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard

(a) Sphere

1 2 3 4 5 6 7

cigar (d=10 ; 10 iterations)

lo
g

(S
R

)
/

n
u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

0.65

0.6

0.55

0.5

0.45

0.4

0.35

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard

(b) Cigar

1 2 3 4 5 6 7

sphere (d=10 ; 40 iterations)

lo
g

(S
R

)
/

n
u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

-0.4

-0.45

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard

(c) Sphere

1 2 3 4 5 6 7

cigar (d=10 ; 40 iterations)

lo
g

(S
R

)
/

n
u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

-0.02

-0.04

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard

(d) Cigar

1 2 3 4 5 6 7

lo
g
(S

R
)

/
n

u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

sphere (d=10 ; 100 iterations)

-0.05

-0.1

-0.15

-0.2

-0.25

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard
cheating

(e) Sphere

1 2 3 4 5 6 7

cigar (d=10 ; 100 iterations)

lo
g
(S

R
)

/
n

u
m

_i
te

ra
ti

o
n

1 + log2(num_proc)

0

-0.02

-0.04

-0.06

-0.08

sequential
regular
e-regular
gaussian
s-gaussian
billard
s-billard
cheating

(f) Cigar

Fig. 4: Dimension d = 10; 10, 40 and 100 iterations; p = 7. Comparison
of Simple Regret (SR) based on the number of processors p. Interpretation: for
the sphere and the cigar, s-Gaussian outperform the other variants when p > 4,
whatever the number of iteration.

275

276

Idol-Guided Backtracking
Search Optimization Algorithm

Mathieu Brévilliers, Omar Abdelkafi,
Julien Lepagnot, and Lhassane Idoumghar

Université de Haute-Alsace (UHA), LMIA (E.A. 3993)
4 rue des frères Lumière, 68093 Mulhouse, France

{mathieu.brevilliers,omar.abdelkafi,

julien.lepagnot,lhassane.idoumghar}@uha.fr

Abstract. This paper introduces a new variant of the Backtracking
Search Optimization Algorithm (BSA) in order to improve the quality
of the solutions found by the algorithm. The proposed algorithm is called
Idol-Guided Backtracking Search Optimization Algorithm (IG-BSA): it
uses the historical population defined in BSA to build and update a set
of idols taken from several previous generations, and the current popu-
lation evolves under the influence of these idols. Moreover, in contrast
with BSA, we add a diversification strategy in case of stagnation. An ex-
perimental study with 19 widely used benchmark problems is presented.
Numerical results and statistical tests show that IG-BSA outperforms
BSA, CMAES, and SPSO2011.

Keywords: continuous optimization, metaheuristic, evolutionary algo-
rithm, BSA, stagnation issue, mathematical functions, Friedman statis-
tical test.

1 Introduction

In many technical fields, engineers are facing complicated problems that can of-
ten be formulated as optimization problems. Metaheuristics are general methods
designed for solving a wide range of hard optimization problems independently
of the technical context. In particular, evolutionary algorithms are based on a
population of solutions, that will evolve in order to converge on the best so-
lution. As examples of commonly used algorithms, we can cite the standard
particle swarm optimisation algorithm (SPSO2011 [2]) and the covariance ma-
trix adaptation evolution strategy (CMAES [4]). In this category, Backtracking
Search Optimization Algorithm (BSA [1]) is also an efficient algorithm, designed
to solve continuous optimization problems. This algorithm has been applied in
different practical areas, and improved or adapted in several ways [3, 7].

In this paper, we introduce a new variant of BSA, called Idol-Guided Back-
tracking Search Optimization Algorithm (IG-BSA). It uses the historical popu-
lation of BSA to build and update a set of idols that guides the population in
the evolution process. In addition to that, we propose a diversification strategy

277

2 Idol-Guided Backtracking Search Optimization Algorithm

in order to tackle stagnation issue. These modifications are aimed at improving
the quality of the solutions found by the algorithm. An exprimental study has
been achieved with 19 benchmark problems, and IG-BSA results are compared
with BSA, CMAES, and SPSO2011.

The rest of this paper is organized as follows. The BSA algorithm is described
in Section 2; the IG-BSA algorithm is introduced in Section 3; our experimental
study is presented in Section 4; and concluding remarks are given in Section 5.

2 Backtracking Search Optimization Algorithm

Backtracking Search Optimization Algorithm (BSA [1]) is an evolutionary algo-
rithm designed to solve continuous optimization problems. Algorithm 1 shows
the simple structure of BSA.

Data: N , D
Result: bestfitness, bestindividual

1 Initialize current population P and historical population oldP with N random
individuals of D dimensions, and evaluate P .

2 Initialize bestfitness and bestindividual.
3 while stopping conditions are not met do
4 – Selection 1: replace the whole oldP with P , with probability 0.5. Then,

permute all individuals of oldP .
5 – Mutation: generate new population Mutant from P and oldP .
6 – Crossover: generate new population Trial from Mutant and P .
7 – Boundary control: for each dimension of each individual of Trial,

randomly regenerate if outside the search space.
8 – Selection 2: evaluate Trial and, for i = 1 to N , update individual i of P

with individual i of Trial if better.
9 – Update bestfitness and bestindividual.

10 end
Algorithm 1: Pseudo-code of BSA.

The main feature of BSA is that it possesses a memory to store a population
from a randomly chosen previous generation. This historical population is used
in the mutation operator to set the search direction for the current generation.
Let P and oldP be respectively the current and the historical populations, each
of them composed of N indivuals with D dimensions. The mutation operator
creates a new population Mutant as follows:

Mutant = P + 3 · rndn · (oldP − P),

where rndn is a real value randomly generated with the standard normal dis-
tribution. Another interesting feature of BSA is that it has only one control
parameter, called mixrate, which is used in the crossover operator. This param-
eter controls how many dimensions (at most) of each individual are selected for
the crossover [1].

278

Idol-Guided Backtracking Search Optimization Algorithm 3

BSA has been tested on a large set of benchmark problems, and statistical
tests have shown that BSA is more successful in comparison with SPSO2011,
CMAES, ABC, JDE, CLPSO, and SADE. These results were obtained with the
following experimental settings[1]: population size N = 30, mixrate = 1, 30 runs
for each benchmark problem. And the generation loop stops:
– if the absolute value of the objective function is less than 10−16,
– or if no better fitness was found during the last 200 000 function evaluations,
– or if the number of function evaluations reaches 2 000 000.

3 Idol-Guided BSA

Historical Population as Idols. IG-BSA uses the concept of idol. An idol is a
person that is admired by others due to his special abilities. In a way, those
who admire an idol are attracted by this person, so that they improve their
own abilities by learning from the idol and following his example. Moreover, in
a given area, at any moment, there exists several idols, which can be indivudals
of past or present, and thus of different times in history. With time, new idols
with better abilities are appearing while other idols are forgotten.

We propose to integrate these interesting social features into the context of
evolutionary algorithms. We have adapted BSA so that its historical population
is used as idols in the following way. At the beginning of every generation, idols
are updated: the ith individual of the current population replaces the ith idol if
it has a better fitness (unlike BSA, this update is made with every generation).
During every generation the ith idol guides the ith individual of the current
population as defined in the mutation operator of BSA.

Stagnation issue. BSA algorithm does not tackle the stagnation issue: it only
uses a stagnation criterion to stop the generation loop, considering that the
algorithm get stuck after 200 000 function evaluations without improvement.

Instead of stopping the algorithm, we prefer to use the whole budget of func-
tion evaluations. Using a numerical study, we introduce the following diversifi-
cation strategy: if no better fitness was found during the last 4 000 generations,
2/3 of individuals of the current population are randomly chosen to be randomly
regenerated in the search space.

Overwiew of IG-BSA. IG-BSA has the same structure as BSA. Selection 1 is
modified in order to use the historical population as idols. Let idolP be the
population of idols, wich contains N indivuals with D dimensions. The mutation
operator creates a new population Mutant as follows:

Mutant = P + 3 · rndn · (idolP − P),

where rndn is a real value randomly generated with the standard normal distri-
bution. Crossover, Boundary control and Selection 2 remain unchanged. Before
going to the next generation, we add a step to tackle the stagnation issue. Al-
gorithm 2 summarizes the structure of IG-BSA.

279

4 Idol-Guided Backtracking Search Optimization Algorithm

Data: N , D
Result: bestfitness, bestindividual

1 Initialize current population P and idol population idolP with N random
individuals of D dimensions, and evaluate P and idolP .

2 Initialize bestfitness and bestindividual.
3 while stopping conditions are not met do
4 – Selection 1: for i = 1 to N , update individual i of idolP with individual i

of P if better. Then, permute all individuals of idolP .
5 – Mutation: generate new population Mutant from P and idolP .
6 – Crossover: generate new population Trial from Mutant and P .
7 – Boundary control: for each dimension of each individual of Trial,

randomly regenerate if outside the search space.
8 – Selection 2: evaluate Trial and, for i = 1 to N , update individual i of P

with individual i of Trial if better.
9 – Update bestfitness and bestindividual.

10 – Check stagnation: after 4 000 generations without improvement, randomly
regenerate 2/3 of individuals of P .

11 end
Algorithm 2: Pseudo-code of Idol-Guided BSA.

4 Experiments

Experimental settings. We realized an experimental study with two versions of
IG-BSA that implement incrementally the 2 modifications proposed in Section 3:
IG-BSA-1, where only the concept of idol was applied; and IG-BSA-2, where both
the diversification strategy and the concept of idol were used.

These algorithms have been tested on 19 widely used benchmark problems
described in [1] (see Table 1). The algorithms settings are: population size N =
30 and mixrate = 1. We perform 30 runs for each benchmark problem. The
generation loop stops:
– if the absolute value of the objective function is less than 10−16,
– or if the number of function evaluations reaches 2 000 000.

Numerical results. Tables 2 and 3 show the results of our C++ implementations
of IG-BSA-1 and IG-BSA-2 in these experimental settings: they are compared to
the results of BSA, CMAES, and SPSO2011 given in [1] (best values are depicted
in bold font). An analysis of these basic numerical results shows that:
– All algorithms successfully solve the benchmark problems F1, F7, F8, and F9.
– Both versions of IG-BSA outperform the other algorithms for function F2.
– IG-BSA-2 outperforms all the other algorithms for function F18.
– For 16 benchmark problems (all except F14, F17, and F19), IG-BSA-2 produces
equal or better results than the other algorithms.
– IG-BSA-2 found the optimal solution for F19, but the standard deviation is
greater than that found by CMAES and SPSO2011.

Statistical tests. In order to compare the performance of IG-BSA-1 and IG-BSA-
2 with BSA, CMAES, and SPSO2011, we performed statistical tests. Since the

280

Idol-Guided Backtracking Search Optimization Algorithm 5

Table 1. List of benchmark problems (ID: function identifier; Low, Up: limits of search
space; D: dimension).

ID Name Low Up D

F1 Sphere -100 100 30
F2 Ackley -32 32 30
F3 Michalewics 0 3.1416 10
F4 Rastrigin -5.12 5.12 30
F5 Rosenbrock -30 30 30
F6 Schaffer -100 100 2
F7 Schwefel 2 22 -10 10 30
F8 Shifted sphere -100 100 10
F9 Schwefel 1 2 -100 100 30
F10 Shifted Schwefel 1 2 -100 100 10
F11 Shifted Schwefel 1 2 with noise -100 100 10
F12 Shifted Rosenbrock -100 100 10
F13 Shifted Rastrigin -5 5 10
F14 Shifted rotated high conditioned elliptic function -100 100 10
F15 Griewank -600 600 30
F16 Shifted rotated Griewank 0 600 10
F17 Shifted rotated Ackley -32 32 10
F18 Shifted rotated Rastrigin -5 5 10
F19 Schwefel 2 6 -100 100 10

results over instances are mutually independent and since, within each instance,
the observations (objective functions) can be ranked, we can use the Friedman
test [5, 6], which is based on the two following hypotheses:
– H0: Each ranking of the algorithms within each problem is equally likely (i.e.,
there is no difference between them).
– H1: At least one of the algorithms tends to yield larger objective functions
than at least one of the other algorithms.

According to the Friedman test T2 = 7.5271. Using a table for the F distri-
bution, with a significance level of α = 0.05, we found that:

F1−α,k−1,(b−1)(k−1) = F0.95,4,18 = 2.4989

where b is the number of benchmark problems and k is the number of meta-
heuristics.

Since T2 > F0.95,4,18, the null hypothesis (H0) is rejected. This means that
there is at least one algorithm whose performance is different from at least one
of the other algorithms. We then performed paired comparisons (Table 4) to find
which metaheuristic is different from the others. Two algorithms are different
if |Ri − Rj | is above the critical value C, Ri is the sum of the ranks of the
algorithm i. In our simulations, the critical value C is equals to 13.2939. Table 4
shows that the results obtained by IG-BSA-2 are different from those obtained by
BSA, CMAES and SPSO2011, whereas CMAES and SPSO2011 obtain similar
performance. From the above analysis, we can see that IG-BSA-2 is better and
outperforms BSA, CMAES and SPSO2011 algorithms. Also, we can see that
BSA is better than CMAES and SPSO2011 approachs.

281

6 Idol-Guided Backtracking Search Optimization Algorithm

T
a
b
le

2
.

B
a
si

c
st

a
ti

st
ic

s
o
f

IG
-B

S
A

-1
a
n
d

IG
-B

S
A

-2
,

a
n

d
co

m
p
a
ri

so
n

w
it

h
B

S
A

,
C

M
A

E
S

,
a
n
d

S
P

S
O

2
0
1
1

(M
ea

n
:

m
ea

n
so

lu
ti

o
n

;
S

td
:

st
a
n

d
a
rd

d
ev

ia
ti

o
n

;
B

es
t:

b
es

t
so

lu
ti

o
n
).

B
es

t
va

lu
es

a
re

d
ep

ic
te

d
in

b
o
ld

fo
n
t.

ID
S
ta

ti
st

ic
s

IG
-B

S
A

-1
IG

-B
S
A

-2
B

S
A

C
M

A
E

S
S
P

S
O

2
0
1
1

F
1

M
e
a
n

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B
e
st

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F
2

M
e
a
n

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
7
5

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
7
5

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
5

1
1
,7

0
4
0
0
1
1
6
8
4
5
8
2
0
0
0

1
,5

2
1
4
3
2
2
9
7
3
7
2
5
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
3
4

9
,7

2
0
1
9
6
1
5
4
0
8
6
5
2
0
0

0
,6

6
1
7
5
7
0
3
8
4
6
6
2
6
0
0

B
e
st

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
7
5

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
7
5

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
8
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
8
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
8
0

F
3

M
e
a
n

-9
,6

6
0
1
5
1
7
1
5
6
4
1
3
5
0
0

-9
,6

6
0
1
5
1
7
1
5
6
4
1
3
5
0
0

-9
,6

6
0
1
5
1
7
1
5
6
4
1
3
5
0
0

-7
,6

1
9
3
5
0
7
3
6
8
4
6
4
7
0
0

-8
,9

7
1
7
3
3
0
3
0
7
5
4
9
3
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
7

0
,7

9
0
4
8
3
0
3
9
8
8
5
0
9
7
0

0
,4

9
2
7
0
1
3
1
6
5
0
0
9
2
2
0

B
e
st

-9
,6

6
0
1
5
1
7
1
5
6
4
1
3
5
0
0

-9
,6

6
0
1
5
1
7
1
5
6
4
1
3
5
0
0

-9
,6

6
0
1
5
1
7
1
5
6
4
1
3
5
0
0

-9
,1

3
8
3
9
7
5
0
5
7
8
7
5
1
0
0

-9
,5

7
7
7
8
1
8
0
9
7
2
0
8
2
0
0

F
4

M
e
a
n

0
,0

3
3
1
6
5
3
0
1
9
0
3
1
0
9
9

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

9
5
,9

7
9
9
8
6
1
2
0
4
9
8
2
0
0
0

2
5
,6

3
6
7
6
0
2
2
5
8
6
7
6
0
0
0

S
td

0
,1

8
1
6
5
3
8
3
9
7
8
8
0
2
3
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

5
6
,6

9
1
9
2
4
5
9
8
5
1
0
0
0
0
0

8
,2

9
4
3
5
1
2
6
8
4
2
1
6
7
0
0

B
e
st

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
9
,8

4
8
7
5
6
5
9
9
3
4
1
5
0
0
0

1
2
,9

3
4
4
6
7
7
4
2
2
1
2
9
0
0
0

F
5

M
e
a
n

0
,1

3
2
8
8
7
4
6
1
8
1
0
0
3
1
0

0
,1

3
2
8
8
7
4
6
1
8
1
0
0
3
1
0

0
,3

9
8
6
6
2
3
8
5
4
3
0
0
9
3
0

0
,3

9
8
6
6
2
3
8
5
5
0
3
5
2
1
0

2
,6

7
5
7
0
4
3
1
1
4
2
6
9
7
0
0

S
td

0
,7

2
7
8
5
4
6
0
4
4
2
9
6
0
3
0

0
,7

2
7
8
5
4
6
0
4
4
2
9
6
0
3
0

1
,2

1
6
4
3
2
8
6
2
2
1
9
5
2
0
0

1
,2

1
6
4
3
2
8
6
2
1
9
4
6
2
0
0

1
2
,3

4
9
0
0
5
8
2
1
0
0
0
4
0
0
0

B
e
st

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
4
2
5
3
5
3
6
8
9
8
4
5
0
1

F
6

M
e
a
n

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,4

6
5
1
2
0
2
4
5
7
3
9
8
9
1
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

9
3
3
6
8
5
1
7
6
0
7
3
7
2
8

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B
e
st

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
9
7
1
5
9
0
9
8
7
7
5
1
4
4

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F
7

M
e
a
n

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B
e
st

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F
8

M
e
a
n

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B
e
st

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F
9

M
e
a
n

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B
e
st

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F
1
0

M
e
a
n

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
2
5
9

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
3
5
0

B
e
st

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

282

Idol-Guided Backtracking Search Optimization Algorithm 7

T
a
b
le

3
.

B
a
si

c
st

a
ti

st
ic

s
o
f

IG
-B

S
A

-1
a
n
d

IG
-B

S
A

-2
,

a
n

d
co

m
p
a
ri

so
n

w
it

h
B

S
A

,
C

M
A

E
S

,
a
n
d

S
P

S
O

2
0
1
1

(M
ea

n
:

m
ea

n
so

lu
ti

o
n

;
S

td
:

st
a
n

d
a
rd

d
ev

ia
ti

o
n

;
B

es
t:

b
es

t
so

lu
ti

o
n
).

B
es

t
va

lu
es

a
re

d
ep

ic
te

d
in

b
o
ld

fo
n
t.

ID
S
ta

ti
st

ic
s

IG
-B

S
A

-1
IG

-B
S
A

-2
B

S
A

C
M

A
E

S
S
P

S
O

2
0
1
1

F
1
1

M
e
a
n

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

7
7
9
8
2
,4

5
6
7
0
4
6
9
8
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
2
5
9

1
3
1
3
7
6
,7

3
6
5
4
5
6
0
1
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
4
6
0

B
e
st

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F
1
2

M
e
a
n

3
9
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3
9
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3
9
0
,1

3
2
8
8
5
9
7
0
4
1
2
0
0
0
0

3
9
0
,5

3
1
5
4
3
8
8
1
6
4
6
0
0
0
0

3
9
3
,4

9
5
9
9
9
9
0
5
6
2
4
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,7

2
7
8
4
6
4
3
5
7
0
3
8
2
0
0

1
,3

7
8
3
4
3
3
9
7
6
3
7
8
3
0
0

1
6
,0

2
2
4
9
6
5
9
0
0
4
6
2
0
0
0

B
e
st

3
9
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3
9
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3
9
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3
9
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3
9
0
,0

0
0
0
0
0
0
0
0
0
1
5
0
0
0
0

F
1
3

M
e
a
n

-3
3
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
3
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
3
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
0
6
,5

7
8
2
0
6
9
6
8
1
5
6
0
0
0
0

-3
2
4
,6

0
4
6
0
0
6
3
2
0
2
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
1
,9

4
7
5
3
9
6
0
4
8
7
5
6
0
0
0

2
,5

0
8
2
3
0
6
0
4
1
5
2
1
0
0
0

B
e
st

-3
3
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
3
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
3
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
2
7
,0

1
5
1
2
2
8
2
8
7
2
0
0
0
0
0

-3
2
9
,0

0
5
0
4
0
9
4
2
9
0
7
0
0
0
0

F
1
4

M
e
a
n

-4
4
9
,9

9
9
9
9
9
9
6
0
2
6
5
0
0
0
0

-4
4
9
,9

9
9
9
9
9
6
8
2
9
3
4
0
0
0
0

-4
4
9
,9

9
9
9
5
6
7
8
6
7
4
3
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
4
,5

8
7
3
9
1
1
9
5
6
5
5
4
0
0
0

S
td

0
,0

0
0
0
0
0
1
7
5
2
8
6
8
3
0
4

0
,0

0
0
0
0
1
5
8
0
5
4
2
7
0
3
8

0
,0

0
0
1
1
7
5
3
8
6
7
5
6
0
4
4

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

4
5
8
,5

7
9
4
1
2
0
0
1
6
2
9
0
0
0
0

B
e
st

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
5
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-4
4
3
,9

5
1
1
2
8
6
0
7
9
8
0
0
0
0
0

F
1
5

M
e
a
n

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
4
9
3
0
6
9
3
5
5
6
0
7
7

0
,0

0
1
1
4
9
8
9
3
5
3
2
1
3
4
9

0
,0

0
6
8
9
4
3
6
9
4
8
1
9
7
1
3

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
1
8
7
6
4
3
5
5
7
5
1
6
4
4

0
,0

0
3
6
4
4
9
4
1
3
5
2
1
1
0
7

0
,0

0
8
0
5
6
5
2
0
1
6
4
9
5
8
7

B
e
st

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F
1
6

M
e
a
n

1
0
8
7
,0

4
5
9
4
8
6
2
8
6
0
0
0
0
0
0

1
0
8
7
,0

4
5
9
4
8
6
2
8
6
0
0
0
0
0
0

1
0
8
7
,0

4
5
9
4
8
6
2
8
6
0
0
0
0
0
0

1
0
8
7
,2

6
4
5
4
6
6
7
8
6
7
0
0
0
0
0

1
0
9
1
,0

6
4
4
3
3
5
1
6
2
5
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
4
4
2
8

0
,5

3
6
5
2
3
0
0
1
8
0
0
1
7
8
0

3
,4

9
7
6
9
4
8
9
4
2
7
2
3
2
0
0

B
e
st

1
0
8
7
,0

4
5
9
4
8
6
2
8
6
0
0
0
0
0
0

1
0
8
7
,0

4
5
9
4
8
6
2
8
6
0
0
0
0
0
0

1
0
8
7
,0

4
5
9
4
8
6
2
8
6
0
0
0
0
0
0

1
0
8
7
,0

4
5
9
4
8
6
2
8
6
0
0
0
0
0
0

1
0
8
7
,0

6
9
6
7
7
2
5
8
3
0
0
0
0
0
0

F
1
7

M
e
a
n

-1
1
9
,9

0
4
1
3
5
9
8
8
9
8
2
0
0
0
0

-1
1
9
,8

5
9
0
4
9
6
5
4
0
7
5
0
0
0
0

-1
1
9
,8

3
5
6
1
2
2
0
5
7
4
4
0
0
0
0

-1
1
9
,9

2
6
1
0
7
3
5
0
9
8
5
0
0
0
0

-1
1
9
,8

1
9
0
2
3
2
9
9
0
9
2
0
0
0
0

S
td

0
,0

3
3
1
3
2
7
0
6
7
4
1
7
1
7
6

0
,0

4
0
8
2
3
8
9
1
0
1
4
2
1
2
8

0
,0

7
0
4
5
1
5
4
6
0
4
7
7
7
8
7

0
,1

5
5
4
0
2
1
4
4
6
1
5
7
7
4
0

0
,0

7
2
0
1
0
7
5
6
0
8
7
4
1
9
9

B
e
st

-1
1
9
,9

5
7
0
3
4
5
9
9
5
9
1
0
0
0
0

-1
1
9
,9

4
1
4
0
9
0
5
4
2
2
7
0
0
0
0

-1
1
9
,9

8
0
2
8
4
7
8
9
6
3
5
0
0
0
0

-1
2
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-1
1
9
,9

3
0
2
7
7
2
6
9
4
1
1
0
0
0
0

F
1
8

M
e
a
n

-3
2
0
,6

4
3
1
1
4
5
1
9
2
1
0
0
0
0
0

-3
2
6
,2

2
0
0
1
0
1
3
7
0
4
8
0
0
0
0

-3
1
9
,2

5
4
4
5
1
5
9
0
3
5
1
0
0
0
0

-3
1
4
,7

8
7
1
1
0
2
9
8
9
3
3
0
0
0
0

-3
2
4
,3

3
1
1
3
2
2
5
3
8
1
7
0
0
0
0

S
td

3
,8

7
7
3
0
8
8
0
4
0
7
2
8
1
0
0

1
,2

0
8
9
0
0
0
3
0
7
2
5
4
2
0
0

3
,3

0
9
1
9
5
9
9
7
5
3
9
0
8
0
0

8
,3

1
1
5
9
8
9
3
0
8
3
0
5
5
0
0

3
,0

0
7
2
2
2
2
9
3
3
6
6
7
3
0
0

B
e
st

-3
2
7
,0

1
5
1
2
2
8
2
8
7
2
0
0
0
0
0

-3
2
9
,0

0
5
0
4
0
9
4
2
9
0
7
0
0
0
0

-3
2
5
,0

2
5
2
0
9
7
5
2
3
5
3
0
0
0
0

-3
2
7
,0

1
5
1
2
2
8
2
8
7
2
0
0
0
0
0

-3
2
7
,1

6
5
0
5
1
3
1
2
0
0
0
0
0
0
0

F
1
9

M
e
a
n

-3
0
9
,9

9
9
9
9
9
9
9
9
9
9
9
0
0
0
0

-3
1
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
0
9
,9

9
9
9
9
9
9
9
9
9
9
8
0
0
0
0

-3
1
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
1
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
td

0
,0

0
0
0
0
0
0
0
0
0
0
1
6
2
2
5

0
,0

0
0
0
0
0
0
0
0
0
0
1
0
6
0
4

0
,0

0
0
0
0
0
0
0
0
0
0
2
3
4
4
3

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B
e
st

-3
1
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
1
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
1
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
1
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-3
1
0
,0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

283

8 Idol-Guided Backtracking Search Optimization Algorithm

Table 4. Paired comparisons. Bold values indicate that the corresponding algorithms
give results that are significantly different.

IG-BSA-2 BSA CMAES SPSO2011

IG-BSA-1 3.5 10.5 24 24

IG-BSA-2 - 14 27.5 27.5

BSA - - 13.5 13.5

CMAES - - - 0

5 Conclusion

The objective of this work is to propose a new variant of BSA in order to improve
the quality of the solutions found by the algorithm.

To this aim, we introduce the concept of idol in the context of evolution-
ary algorithms and we integrate this approach into BSA by using its historical
population as a set of idols. We also add an anti-stagnation strategy that ran-
domly regenerates part of the population in a diversification purpose. This new
algorithm is called Idol-Guided Backtracking Search Optimization Algorithm
(IG-BSA), and its efficiency is evaluated with 19 widely used benchmark prob-
lems: numerical results and Friedman statistical test show that IG-BSA is more
successful than BSA, CMAES, and SPSO2011.

In future work, we will consider comparing IG-BSA to other algorithms
(SHADE, HS, ABC, ACO) with additional benchmark functions. Another per-
spective is to develop a massively parallel version of IG-BSA and to validate it
as well with a large set of benchmark functions. We also think of applying this
algorithm to an industrial problem, like optimizing the energetic performances
of an electric scooter motorization.

References

1. P. Civicioglu. Backtracking search optimization algorithm for numerical optimiza-
tion problems. Applied Mathematics and Computation, 219(15):8121 – 8144, 2013.

2. M. Clerc. Standard Particle Swarm Optimisation. 15 pages, September 2012.
3. K. Guney, A. Durmus, and S. Basbug. Backtracking search optimization algorithm

for synthesis of concentric circular antenna arrays. International Journal of Anten-
nas and Propagation, 2014.

4. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2):159–195, June 2001.

5. L. Idoumghar, N. Cherin, P. Siarry, R. Roche, and A. Miraoui. Hybrid ICA-PSO
algorithm for continuous optimization. Applied Mathematics and Computation,
219(24):11149 – 11170, 2013.

6. J. G. Villegas. Using nonparametric test to compare the performance of meta-
heuristics. http://or-labsticc.univ-ubs.fr/sites/default/files/Friedman%

20test%20-24062011_0.pdf, 2011.
7. L. Wang, Y. Zhong, Y. Yin, W. Zhao, B. Wang, and Y. Xu. A hybrid backtracking

search optimization algorithm with differential evolution. Mathematical Problems
in Engineering, 2015.

284

285

Comparing optimizers on a unit commitment
problem

Vincent Berthier

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud)
Bat 660 Claude Shannon Univ. Paris-Sud, 91190 Gif-sur-Yvette, France

Email: {firstname.lastname}@inria.fr

Abstract. This paper compares several black-box optimization algo-
rithms on a unit commitment problem. Compared to existing testbeds,
this one provides several scales, is real-world, and none of the compared
algorithms were created by the author of the testbed. Differential Evo-
lution basically performs best overall, though not for all test cases.

1 Introduction

Several testbeds were provided by [24, 1, 10, 8] for non-linear optimization. In the
evolutionary computation community the most widely used might be [24]. We
here propose an alternative set of experiments, on which we compare a set of
optimisers.

2 Algorithms

Over the years, a number of evolutionary algorithms were developed, each in-
tended to address a specific issue, none being able to give a good solution to
every single problem.

Among this set of algorithm, there are some “stars”, widely used in the
continuous optimisation community. Some of those algorithms are:

– Self-Adaptive Evolution Strategies (SA-ES[2]), which come in three main
flavours: isotropic, where there is only one mutation parameter; anisotropic
with one mutation factor for each parameter; anisotropic with covariance
matrix[21].

– Covariance Matrix Adaptation Evolution Strategy (CMA-ES[11]) where the
mutation step sizes are guided by cumulative step-size adaptation and also
features full covariance matrix adaptation.

– The “simple” (1 + 1)-ES, where the step size is updated according to the
success or failure to improve.

– Nelder-Mead[17], a simplex method where one point is moved at each gen-
eration.

– Particle Swarm Optimisation[13, 22], where the position of each point - or
particle - is influenced by those of its neighbours.

286

2 Vincent Berthier

– Differential Evolution[23], an algorithm where mutations are done by
crossovers with one or more individuals.

Thanks to their notoriety, many different implementations of those algorithm
exist. In this paper, we will use those offered by the Evolving Object[12] library
when possible, and extend it for those algorithms not yet there.

In many comparisons, an extensive work is done to tune each individual
meta-parameters of those optimisers. Here, we elected to compare them by only
using their defaults or recommended parameters: their ease of use “out of the
box” is after all an important criteria in many real world situations. With N
being the dimension of the problem, those parameters are:

– SA-ES: population size λ = 12 and parent population size µ = 3. For
anisotropic variant we used τ = 1

√
2N , with β = 0.0873 for the covariance

version.
– CMA-ES: population size λ = 4+b3 log(N)c, parent population size µ = λ/2
– (1+1)-ES step size was multiplied by r = 1.5 in case of a successful mutation,

and divided by r = 1.51/4 on a failure.
– Nelder-Mead: Population is of course µ = N + 1, and mutation parameters

are α = 1, γ = 2, ρ = −0.5 and σ = 0.5.
– For PSO, the standard parameters are widely discussed ([18, 25, 5, 26, 6, 3]):

We used a population µ = 30, with 10 neighbours and update parameters
ω = 1

2×log(2) , Φp = 0.5 + log(2), Φg = 0.5 + log(2), velocityinit = 1.0 and

velocitymax = 1.5
– DE: The DE/curr-to-best/1 variant was used (mutate the selected individual

with the best one of the generation) with mutation parameters f1 = 0.8,
f2 = 0.8 and cr = 0.5.

3 Testbed

Our testbed has the following characteristics:

– It is a real problem, originally not designed for academic purpose. As a
consequence, it has the same degree of partial separability as (at least some)
real world problems.

– It includes several cases, with dimension ranging from 3 to several thousands.
We should indeed include, later, bigger testcases.

– It is restricted to direct policy search for power systems. This category of
problems is definitely an important one; we do not claim that our results
have some validity beyond this scope.

– We compared algorithms and implementations in a neutral manner. We have
no special interest for one algorithm or another, we just try to find which
algorithm we should recommend as default in our optimization platform.

– This family of problems has a huge economical (billions of dollars per year)
and environmental impact.

Our testbed has the following parameters:

287

Comparing optimizers on a unit commitment problem 3

– Number of time steps.
– Number of stocks (number of state variables).
– Parameters for the inflows and demand and their variabilities, which are held

constant over our experiments.

It is available at https://www.lri.fr/~teytaud/uctest/uctest.html.
The number of decisions per time step is equal to the number of stocks (we

decide how much water we use for each stock). The number of inputs for making
each decision is one observation per stock (the level), plus the 4 calendar factors.
Hence, the number of action variables is nbActions = nbStocks and the number
of input variables is nbInputs = nbStocks+ 4. The number of parameters for a
given problem can be computed as follows (and the detailed policies can be seen
at https://www.lri.fr/~teytaud/uctest/uctest.html):

– Handcrafted policy: the number of parameters is always N = 3.
– Conformant planning (a sequence of decisions, applied independently of ob-

servations): N = T ×NbActions = T ×NbStocks (one parameter per time
step and per stock).

– Neural network (feedforward, one hidden layer): the number of parameters
is N = NbNeurons× (NbInputs+NbActions+ 1) +NbActions:
• NbActions parameters for the biases for the output,
• NbInputs+ 1 for the input weights of each neuron,
• and NbActions connections between each hidden neuron and the output

neurons).
– Fuzzy control: the number of parameters is N = NbRules × (2nbInputs +
nbActions + 1) because each rule has 2NbInputs + 1 parameters for the
antecedent (one scale and one average value for each coordinate, plus one
default rule weight) and NbActions parameters for the succedent.

For example, with 25 stocks and 100 timesteps, the number of parameters
are 3 for the handcrafted policy; 2500 for conformant planning; 2681 = 32(58 +
25) + 25 for fuzzy systems with 25 rules; 1785 = 32(29 + 25 + 1) + 25 for neural
networks with 25 neurons.

The fuzzy rule used in the experiments uses a membership function product of
coordinate-wise inverse distances. This was selected among various membership
functions after preliminary experiments.

4 Summary of results

We summarize our results in tables below for 512 seconds of budget. Overall,
DE performed best.

4.1 Overview and results per problem size

In Table 1 we give results averaged over all problems, and then for different sizes
(< 10 parameters, 10 to 99, 100 to 999, and 1000+. Due to size constraints only

288

4 Vincent Berthier

the average performances of the algorithms are shown, but the underlying study
was performed based on average, worst, quartile and decile performances. We
can see that in high dimension, CMA suffers due to its internal cost, as shown
by the small number (relative to the other algorithms).

All problems
average perf

DE 0.79 +- 0.023
CMA 0.75 +- 0.035
SAiso 0.73 +- 0.023
PSO 0.66 +- 0.033
SA 0.66 +- 0.026

SAcov 0.66 +- 0.025
1+1 0.6 +- 0.027
NM 0.54 +- 0.036

Nb params ≤ 10
average perf

PSO (1560k) 0.83 +- 0.092
DE (1545k) 0.82 +- 0.06

SAcov (1668k) 0.78 +- 0.064
CMA (1580k) 0.78 +- 0.054
SAiso (1580k) 0.78 +- 0.059
SA (1649k) 0.76 +- 0.077
NM (1548k) 0.67 +- 0.073
1+1 (1772k) 0.62 +- 0.071

10 ≤nb params < 100
average perf

DE (1622k) 0.87 +- 0.028
CMA (1660k) 0.82 +- 0.047
SAiso (1642k) 0.69 +- 0.04
PSO (1670k) 0.61 +- 0.04
1+1 (1629k) 0.59 +- 0.05

SAcov (1619k) 0.56 +- 0.056
SA (1618k) 0.55 +- 0.058
NM (1666k) 0.51 +- 0.046

100 ≤nbParams< 1000
average perf

DE (936k) 0.76 +- 0.035
CMA (641k) 0.75 +- 0.051
SAiso (932k) 0.74 +- 0.034
SA (926k) 0.68 +- 0.031

SAcov (875k) 0.68 +- 0.029
PSO (948k) 0.64 +- 0.053
1+1 (930k) 0.61 +- 0.041
NM (942k) 0.54 +- 0.056

1000 ≤nbParams< 10000
average perf

PSO (167k) 0.8 +- 0.088
SAiso (159k) 0.78 +- 0.064
SA (156k) 0.73 +- 0.056
DE (162k) 0.73 +- 0.075

SAcov (104k) 0.7 +- 0.054
CMA (5k) 0.59 +- 0.14
1+1 (159k) 0.58 +- 0.083
NM (152k) 0.54 +- 0.14

Table 1: Each result is linearly normalized so that 1 is the maximum (best) result,
and 0 is the minimum (worst) result over all runs for this controller and this unit
commitment problem (so higher is better). The numbers between parenthesis are
the number of fitness evaluations performed in the given budget of 512s.

4.2 Per family of controllers and per problem size

For each testbed, we specify with which frequency an algorithm (in row) out-
performs another one (in column). These results in Tables 2 and 3 are the same
as the results above, but broken down on the different test cases. Due to size
constraints results on the large testbed are not shown, but they are essentialy
the same as the medium case, the only major difference is that PSO becomes
the best algorithm on the Conformant Planning function.

5 Conclusions and further work

A short conclusion is that DE performs best overall, with also an excellent stabil-
ity. This is consistent with the success of DE on several competitions - variants
or combinations of DE have won the CEC 2006, CEC 2010 and CEC 2013 com-
petitions[7, 14].

Still, there is no clear-cut conclusion; DE is a bit weaker with neural network
controllers, and even algorithms which are usually not that stable (eg. Nelder-

289

Comparing optimizers on a unit commitment problem 5

Mead or (1 + 1)-ES) sometimes perform very well. In particular, the important
special case of conformant planning is very well tackled by the simple (1+1)-ES.

PSO performed well in high dimensional problems. Nelder-Mead was sur-
prisingly good in spite of long initialization (with a population linear in the
dimension).

CMA performed very well in some cases, but was in general clearly outper-
formed by DE.Variants of CMA with limited covariance (eg. diagonal) might be
considered to alleviate the dimensional problem.

For sure, this work is not intended to be some kind of “final” comparison.
This is one test case, with the advantage that it is a real world and (ecologically
and economically) important test case. Besides the fact that our test cases can
lead to different conclusions, we do not take into account the limit in terms of
parallelization, whereas parallelization is one of the main body of work around
PSO [16, 15, 20, 4, 9].

The main further works are (i) including more algorithms (eg. Newuoa[19],
variants of DE and memetic algorithms) (ii) including noisy optimization (iii)
parallel setting, eg. constraining the population size to 1000 (iv) bigger test cases
(we can without effort extend the test case to 100 stocks and 2000 time steps,
which is consistent with some real world cases - unit commitment problems exist
at various scales).

References

1. Auger, A., Finck, S., Hansen, N., Ros, R.: BBOB 2009: Comparison Tables of
All Algorithms on All Noiseless Functions. Technical Report RT-0383 (Apr 2010),
https://hal.inria.fr/inria-00471251

2. Beyer, H.G.: The Theory of Evolution Strategies. Natural Computing Series,
Springer, Heideberg (2001)

3. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
IEEE Swarm Intelligence Symposium. pp. 120–127 (2007), http://dx.doi.org/
10.1109/SIS.2007.368035

4. Chang, J.F., Chu, S.C., Roddick, J.F., Pan, J.S.: A parallel particle swarm opti-
mization algorithm with communication strategies. J. Inf. Sci. Eng. 21(4), 809–818
(2005)

5. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in
a multidimensional complex space. Evolutionary Computation, IEEE Transactions
on 6(1), 58–73 (2002)

6. Clerc, M.: Beyond standard particle swarm optimisation. IJSIR 1(4), 46–61 (2010),
http://dblp.uni-trier.de/db/journals/ijsir/ijsir1.html#Clerc10

7. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art.
IEEE Trans. on Evolutionary Computation 15(1), 4–31 (2011)

8. Gallagher, M.: Clustering problems for more useful benchmarking of optimization
algorithms. In: Simulated Evolution and Learning - 10th International Conference,
SEAL 2014, Dunedin, New Zealand, December 15-18, 2014. Proceedings. pp. 131–
142 (2014), http://dx.doi.org/10.1007/978-3-319-13563-2_12

9. Gardner, M., McNabb, A.W., Seppi, K.D.: A speculative approach to paralleliza-
tion in particle swarm optimization. Swarm Intelligence 6(2), 77–116 (2012)

290

6 Vincent Berthier

10. Gould, N.I.M., Orban, D., Toint, P.L.: Cuter and sifdec: A constrained and uncon-
strained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394
(2003)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 11(1) (2003)

12. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: A general
purpose evolutionary computation library. In: Artificial Evolution. pp. 231–244
(2001), citeseer.ist.psu.edu/keijzer01evolving.html

13. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks. pp. 1942–1948 (1995)

14. LaTorre, A., Muelas, S., Pena, J.M.: Large scale global optimization: Experimental
results with mos-based hybrid algorithms. In: Evolutionary Computation (CEC),
2013 IEEE Congress on. pp. 2742–2749 (June 2013)

15. Mahdad, B., Srairi, K., Bouktir, T., Benbouzid, M.: Fuzzy Controlled Parallel
PSO to Solving Large Practical Economic Dispatch. In: IEEE (ed.) Proceedings
of the 2010 IEEE International Conference of the IEEE Industrial Electronics
Society. pp. 2695–2701. IEEE, Phoenix, United States (Nov 2010), http://hal.
archives-ouvertes.fr/hal-00564733

16. McNabb, A., Monson, C., Seppi, K.: Parallel pso using mapreduce. In: Evolutionary
Computation, 2007. CEC 2007. IEEE Congress on. pp. 7–14 (2007)

17. Nelder, J., Mead, R.: A simplex method for function minimization. Computer
Journal 7 pp. 308–311 (1965)

18. Parsopoulos, K.E., Vrahatis, M.N.: Parameter selection and adaptation in unified
particle swarm optimization. Mathematical and Computer Modelling 46(1-2), 198–
213 (2007)

19. Powell, M.J.D.: Developments of newuoa for minimization without derivatives.
IMA J Numer Anal pp. drm047+ (February 2008), http://dx.doi.org/10.1093/
imanum/drm047

20. Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel
global optimization with the particle swarm algorithm. JOURNAL OF NUMER-
ICAL METHODS IN ENGINEERING 61, 2296–2315 (2003)

21. Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley & Sons,
New-York (1981), 1995 – 2nd edition

22. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings
of IEEE International Conference on Evolutionary Computation. pp. 69–73. IEEE
Computer Society, Washington, DC, USA (May 1998)

23. Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for
global optimization over continuous spaces. J. of Global Optimization 11(4), 341–
359 (Dec 1997), http://dx.doi.org/10.1023/A:1008202821328

24. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Ti-
wari, S.: Problem definitions and evaluation criteria for the cec 2005 special ses-
sion on real-parameter optimization. Tech. Rep. AND KanGAL Report #2005005,
IIT Kanpur, India (2005), http://public.cranfield.ac.uk/sims_staff/wcat/

cec2005/sessions/
25. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and

parameter selection. Information Processing Letters 85(6), 317 – 325 (2003), http:
//www.sciencedirect.com/science/article/pii/S0020019002004477

26. Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm opti-
misation 2011 at cec-2013: A baseline for future pso improvements. In: IEEE
Congress on Evolutionary Computation. pp. 2337–2344. IEEE (2013), http:

//dblp.uni-trier.de/db/conf/cec/cec2013.html#Zambrano-BigiariniCR13

291

Comparing optimizers on a unit commitment problem 7

(a) DE outperforms everything for the specific policy

SAiso (1 + 1) SA SACov CMA NM DE PSO
SAiso 100.00 28.57 57.14 64.29 100.00 21.43 42.86

(1 + 1)− ES 0.00 0.00 0.00 7.14 14.29 7.14 0.00
SA− ES 71.43 100.00 57.14 71.43 92.86 14.29 50.00

SA− ESCov 42.86 100.00 42.86 78.57 92.86 21.43 50.00
CMA− ES 35.71 92.86 28.57 21.43 85.71 14.29 50.00

NM 0.00 85.71 7.14 7.14 14.29 0.00 0.00
DE 78.57 92.86 85.71 78.57 85.71 100.00 85.71
PSO 57.14 100.00 50.00 50.00 50.00 100.00 14.29

(b) With the neural network, PSO is clearly the best algorithm

SAiso (1 + 1) SA SACov CMA NM DE PSO
SAiso 92.86 92.86 89.29 42.86 21.43 50.00 0.00

(1 + 1)− ES 7.14 46.43 50.00 35.71 10.71 3.57 0.00
SA− ES 7.14 53.57 75.00 28.57 10.71 10.71 0.00

SA− ESCov 10.71 50.00 25.00 28.57 10.71 10.71 0.00
CMA− ES 57.14 64.29 71.43 71.43 28.57 25.00 17.86

NM 78.57 89.29 89.29 89.29 71.43 78.57 3.57
DE 50.00 96.43 89.29 89.29 75.00 21.43 0.00
PSO 100.00 100.00 100.00 100.00 82.14 96.43 100.00

(c) CMA is the best performing algorithm for Conformant Planning

SAiso (1 + 1) SA SACov CMA NM DE PSO
SAiso 100.00 71.43 71.43 0.00 42.86 7.14 100.00

(1 + 1)− ES 0.00 0.00 14.29 0.00 28.57 0.00 100.00
SA− ES 28.57 100.00 57.14 0.00 42.86 7.14 100.00

SA− ESCov 28.57 85.71 42.86 0.00 42.86 0.00 92.86
CMA− ES 100.00 100.00 100.00 100.00 100.00 64.29 100.00

NM 57.14 71.43 57.14 57.14 0.00 0.00 85.71
DE 92.86 100.00 92.86 100.00 35.71 100.00 100.00
PSO 0.00 0.00 0.00 7.14 0.00 14.29 0.00

(d) For Fuzzy control, SA-iso is the best algorithm

SAiso (1 + 1) SA SACov CMA NM DE PSO
SAiso 100.00 100.00 100.00 100.00 100.00 92.86 100.00

(1 + 1)− ES 0.00 42.86 64.29 92.86 100.00 60.71 100.00
SA− ES 0.00 57.14 96.43 92.86 100.00 67.86 96.43

SA− ESCov 0.00 35.71 3.57 92.86 100.00 25.00 82.14
CMA− ES 0.00 7.14 7.14 7.14 71.43 0.00 28.57

NM 0.00 0.00 0.00 0.00 28.57 0.00 0.00
DE 7.14 39.29 32.14 75.00 100.00 100.00 96.43
PSO 0.00 0.00 3.57 17.86 71.43 100.00 3.57

Table 2: Frequency (in percentage) where an algorithm (in row) outperforms
another one (in column) in the small case (5 stocks, 25 timesteps).

292

8 Vincent Berthier

(a) DE outperforms everything for the specific policy

SAiso (1 + 1) SA SACov CMA NM DE PSO
SAiso 100.00 50.00 64.29 64.29 100.00 7.14 42.86

(1 + 1)− ES 0.00 0.00 0.00 0.00 42.86 0.00 0.00
SA− ES 50.00 100.00 64.29 42.86 92.86 0.00 28.57

SA− ESCov 35.71 100.00 35.71 28.57 92.86 0.00 14.29
CMA− ES 35.71 100.00 57.14 71.43 100.00 0.00 21.43

NM 0.00 57.14 7.14 7.14 0.00 0.00 7.14
DE 92.86 100.00 100.00 100.00 100.00 100.00 92.86
PSO 57.14 100.00 71.43 85.71 78.57 92.86 7.14

(b) With the neural network, PSO is clearly the best algorithm

SAiso (1 + 1) SA SACov CMA NM DE PSO
SAiso 75.00 82.14 78.57 10.71 3.57 35.71 0.00

(1 + 1)− ES 25.00 46.43 60.71 10.71 3.57 46.43 0.00
SA− ES 17.86 53.57 75.00 7.14 0.00 17.86 0.00

SA− ESCov 21.43 39.29 25.00 7.14 0.00 25.00 0.00
CMA− ES 89.29 89.29 92.86 92.86 21.43 60.71 10.71

NM 96.43 96.43 100.00 100.00 78.57 100.00 25.00
DE 64.29 53.57 82.14 75.00 39.29 0.00 7.14
PSO 100.00 100.00 100.00 100.00 89.29 75.00 92.86

(c) DE is the best performing algorithm for Conformant Planning

SAiso (1 + 1) SA SACov CMA NM DE PSO
SAiso 100.00 64.29 71.43 64.29 92.86 35.71 64.29

(1 + 1)− ES 0.00 0.00 21.43 21.43 57.14 0.00 50.00
SA− ES 35.71 100.00 64.29 64.29 92.86 35.71 57.14

SA− ESCov 28.57 78.57 35.71 42.86 78.57 7.14 64.29
CMA− ES 35.71 78.57 35.71 57.14 64.29 28.57 42.86

NM 7.14 42.86 7.14 21.43 35.71 7.14 21.43
DE 64.29 100.00 64.29 92.86 71.43 92.86 64.29
PSO 35.71 50.00 42.86 35.71 57.14 78.57 35.71

(d) For Fuzzy control, SA-iso is the best algorithm

SAiso (1 + 1) SA SACov CMA NM DE PSO
SAiso 89.29 89.29 100.00 100.00 100.00 89.29 96.43

(1 + 1)− ES 10.71 21.43 64.29 100.00 100.00 53.57 60.71
SA− ES 10.71 78.57 82.14 100.00 100.00 85.71 78.57

SA− ESCov 0.00 35.71 17.86 100.00 100.00 46.43 42.86
CMA− ES 0.00 0.00 0.00 0.00 42.86 0.00 7.14

NM 0.00 0.00 0.00 0.00 57.14 0.00 0.00
DE 10.71 46.43 14.29 53.57 100.00 100.00 53.57
PSO 3.57 39.29 21.43 57.14 92.86 100.00 46.43

Table 3: Frequency (in percentage) where an algorithm (in row) outperforms
another one (in column) in the medium case (15 stocks, 50 timesteps).

293

294

Combining policies: the best of human expertise
and neurocontrol

Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

TAO, Inria, Univ. Paris-Sud, UMR CNRS 8623
Bat 660 Claude Shannon Univ. Paris-Sud, 91190 Gif-sur-Yvette, France

firstname.lastname@inria.fr

Abstract. We consider sequential decision making in the case where a
generative model and a parametric policy are available. Such a frame-
work is naturally tackled with Direct Policy Search, i.e. parametric op-
timisation over simulations. We propose a simple method that combines
this parametric policy with a more generic neural network, where all
parameters are trained simultaneously. As such, our approach doesn’t
require any computational overhead. We show that the resulting policy
significantly outperforms both the domain specific policies and the neural
network on a unit commitment test problem.

1 Introduction

In this paper, we study planning under uncertainty, where only a generative
model of the domain is available. We do not make any assumption on the inner
dynamics of the problem.Instead, we assume that we have some prior knowl-
edge, in the form of handcrafted parametric policies. These policies represent
the existing methods to solve a problem. They can be optimal solutions of a
simplified version of the problem, or simply human experience. The constants in
those parametric policies are replaced by parameters optimised on simulations.
This is Direct Policy Search, also known as Simulation-Based optimisation. More
precisely, this is Direct Policy Search on top of expert policies; of course, Direct
Policy Search can also be applied on top of generic policies such as neural net-
works or fuzzy rules. As Direct Policy Search rarely provides a gradient and
needs a lot of robustness, it is usually optimized by evolutionary algorithms.

This approach is stable and efficient. It is particularly convenient when an
expert policy is available [5]. However, in that case, it is limited by the structure
of the policy. To combine and exploit existing solvers, portfolios are now a widely
established principle. They are used in combinatorial optimisation [17, 11] and
noisy optimisation [3], including applications to control [10]. In this work, we
propose a simple method for combining parametric policies in a direct policy
search framework. In contrast to portfolios as in [10], our solution not only
selects the best of several policies but also in some cases vastly outperforms each
of them, without computational overhead. We perform experiments on a unit
commitment problem, a kind of power system management problem where the
goal is to optimise the cost of energy production.

295

2 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

The following sections briefly review discrete time controls methodologies,
surveys methods aimed at combining policies, and presents the concept of or-
thogonality in portfolios, which will be central in our work.

2 Background and notations

With states noted x ∈ X and actions u ∈ U , we assume a generative model
is available, ie. given (x, u), we can sample a resulting state x′ = f(x, u) and
reward r = ρ(x, u, x′). f is the transition function and follows an unknown
random distribution (e.g. x′ = f(x, u) depends on some random ω through
x′ = f(x, y, ω)).

A policy π is an object that given a state x, returns an action u. It can
be deterministic or stochastic, a parametric function or a qualitative heuristic.
Note that if the problem is non-Markovian, optimal policies might require to
include the entire history of observation in the state variable x, making methods
sensitive to the size of the state space highly impractical [2].

The objective is to find a policy that maximizes the expected reward over a
finite horizon T . Formally, given an initial state x0, we try to find the solution
π∗ to

argmax
π

E

[∑

t

ρ(xt, π(xt), f(xt, ut))

]
(1)

with xt+1 = f(xt, π(xt)) for 0 ≤ t < T .

2.1 Methodologies based on value functions

To find the optimal policy, the favourite methods in power systems applications
(eg. the management of long term hydroelectricity storage en production), come
from Dynamic programming [4] (DP) which is at the origin of a wide family
of discrete-time control algorithms such as Stochastic Dual Dynamic Program-
ming [18], Approximate Dynamic Programming [19], value iteration and a wide
family of reinforcement learning algorithms. Despite their solid theoretical basis,
they are computationally expensive, they cannot directly handle large scale non-
Markovian random processes, and they are usually not anytime algorithms (ie.
they return an incomplete answer if interrupted before termination). Because of
this, they are often less efficient than simpler deterministic approaches [25, 7].

2.2 Direct Policy Search

Another trend in control is Direct Policy Search (DPS), which consists in search-
ing in the policy space directly, without any proxy. This is often done by defining
a set of parametric policies that depend on some parameter vector θ. One needs
to find an optimal θ∗, so that πθ∗ is a solution to Eq. 1. The search for a good
parameter θ can be done in a noisy optimisation framework, by relying on direct
simulations of candidate policies πθ on the test problem.

296

Combining policies: the best of human expertise and neurocontrol 3

Various algorithms have been proposed, including evolutionary algorithms
with resampling numbers chosen by Bernstein races [13] or by simple resampling
rules [1]. They are often improved by the use of common random numbers [22,
23, 14].

The performance of parametric DPS heavily relies on the choice of the policy
search space, i.e. the chosen class of policies that can be considered as candidates.
Examples include neural networks [5] and fuzzy systems [24], usually optimised
by evolutionary algorithms [21].

We use in this paper a self-adaptive evolution strategy, with anisotropic step-
size [6]. The population size is set to λ = 4N + 4 where N is the number of
parameters, and µ = λ/4. The mutation rate is τ = 1/

√
2N . Initial parameters

are randomly drawn with a Gaussian distribution with step size 1 and step-sizes
are independently randomly drawn as the exponential of standard Gaussian
distributions.

3 Meta-policy search

To find an optimum solution, it is of course possible to try each of the policies,
and select the best one. This however implies to run the optimisation process
multiple times. Here, we propose a scheme to combine multiple policies: one is
problem specific under the form of simple heuristics designed using prior knowl-
edge on the domain, and the other one is a generic parametric policy (eg. Neural
Network, Fuzzy rules).

3.1 Combining policies

Combining several policies has been done before, in different ways. A part of
the literature combines policies in the sense that each policy, equipped with
state prediction, handles a part of the state space [9]. Some approach combine
policies based on their Q-functions [16] or by combining the policies themselves
[12]. Another method is to distribute the computational power over a family
of algorithms (similarly to how multi-armed bandits distribute arm pulls) by
combining DPS algorithms [10].

As in [10], we consider a DPS-based approach. More precisely, we consider
several parametric policies, to be optimised by DPS. However, instead of optimis-
ing each family separately, and then combining them, we consider a parametric
combination αC1 + (1 − α)C2 where, C1 and C2 are two policies. We then op-
timise the joint policy. With this, the decision resulting from the joint policy is
the combination of each policy’s output.

More formally, given a current state s, we select the decision:

Ccombination(s)αC1(s) + (1− α)C2(s). (2)

This makes sense in the case of continuous actions. The number of parameters
to optimise is N1 + N2 + 1, where N1 and N2 are the number of parameters of

297

4 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

C1 and C2 respectively. We actually write α as a parametric function ranging
from 0 to 1, with α = 1

2 (1 +β/
√
β2 + 1); the parameter β is optimised in R and

initialized at 0.
Our method has the following advantages:

– there is no computational overhead, as all the parameters of the combined
policy are trained at once, without specific training of each independent pol-
icy. Most of the computation time is spent in the simulations, not in the
policies themselves. Therefore the computational overhead for a given num-
ber of iterations, compared to each of the families separately, is negligible.

– we can outperform all the individual policies, as the global family of functions
contains weighted averages of the original policies and not only the union of
both families of functions.

3.2 Orthogonal policies

[20] pointed out the importance of using “orthogonal” algorithms in a portfolio.
A portfolio containing too many optimisers tends to be unstable. It is then
necessary to choose as few optimisers as possible, while covering as best as
possible the set of all possible solvers. In order to increase the chances of finding
a good solution, what matters is not (only) the number of optimisers in the
portfolio, but how many orthogonal these optimisers are. Optimizers are said to
be “orthogonal” if they are “very” different one to each other.

In the same way, combining many policies, or two policies of the same type
(eg. neural networks) is not optimal. The best strategy would be to choose two
policies as different from one another as possible.

4 Experimental results: combining handcrafted functions
and neural networks

To analyse our method, we designed many individual policies to later combine
them. These include:

– A handcrafted function based on heuristics, designed by human experts.
– Several fuzzy control functions.
– Conformant planning: a sequence of actions, independent of state observa-

tions.
– A one layer feedforward neural network with sigmoid activation functions,

such that for a state at time t st, the action at is:

at = W0 +W1 × tanh(W2 × st +W3)

Where W0 is a bias vector of size the number of actions at each time step,
W1 the activation weights of the neurons in the hidden layer of dimension
‖actions‖ × ‖neurons‖, W2 is the weight matrix from the states to the
neurons of dimension ‖neurons‖×‖states‖, and W3 is a bias vector the size

298

Combining policies: the best of human expertise and neurocontrol 5

of the number of neurons. The total number N of parameters to optimise is
then

N = ‖states‖ × ‖neurons‖+ ‖neurons‖
+ ‖actions‖ × ‖neurons‖+ ‖actions‖

Fuzzy systems and conformant planning are intermediates between expert
handcrafted functions and neural networks:

– They are less specialized than the expert function, which has only 3 param-
eters and works quite well.

– They are less parameter-free learners than the neural network.

Typically in our experiments the expert function is the best one for small learning
time, and the neural network is the best function asymptotically. Interestingly
however, we will see that our combination not only selects the best among the
neural network and the expert function - it outperforms both.

4.1 Test problems: two types of unit commitment

Our test case is the one provided freely at https://www.lri.fr/~teytaud/

uctest/uctest.html. In the unit commitment problem, the goal is to use avail-
able means of storage and production to satisfy a demand in energy over a given
time horizon. We consider the case where energy can be produced from hydro-
electric plants for free and from thermal plants at a cost. Energy can be stored
until a certain limit in hydroelectric plants. The goal being to minimise the
costs, we want to use the thermal plants as little as possible, and to maximise
the efficiency of the storage available, while still meeting the demand. Failures
to produce the required demand are heavily penalised.

We study our method on two distinct versions of this problem: a hydroelec-
tric valley (all dams are connected in series), and a random network of dams
avoiding cycles. In both cases, there are five dams, i.e. the state space contains
5 continuous variables. There are 21 time steps. Thermal units complete the
dispatch, ie. they produce the electricity needed to satisfy the demand. In short,
the control problem has 5 input variables, 5 output variables, and 21 time steps.

The dams receive random inflows at each time step, simulating weather con-
ditions. We study two cases: rainy seasons with large inflows, and dry seasons
with small inflows. The noise-free setting corresponds to a case in which we as-
sume that all random processes can be predicted with high accuracy.The noisy
setting represents a more difficult scenario. We need a noisy optimisation algo-
rithm instead of a classical optimisation algorithm. In the noisy case, each fitness
evaluation at iteration i of the evolutionary algorithm is averaged over d10

√
ie

runs in order to mitigate the level of noise [1].

299

6 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

4.2 Noise free setting

We first present experiments in a simplified noise-free case, ie. the objective
function is deterministic. This means that all random processes are replaced by
a deterministic simplified counterpart. Results are presented in Fig. 1 (hydro-
electric valley in the noise-free case; top: large inflows; bottom: small inflows)
and Fig. 2 (hydroelectric network in the noise-free case, same two settings). In
each of these four noise-free cases, the combination is at least as efficient as each
policy separately, and in two cases it outperforms them vastly. Each experiment
is reproduced with various numbers of neurons; 2 or 4 neurons is usually optimal.

4.3 Noisy setting

We now perform experiments with random noise around the mean inflows and
demands. Fig. 3 presents the results in the case of the hydroelectric valley and
Fig. 4 presents the results in the case of the hydroelectric random network (in
both cases, two settings, namely large inflows and small inflows). In each of these
four noisy cases, the combination is at least as efficient as each policy separately,
and in two cases it outperforms them vastly. Each experiment is reproduced with
various numbers of neurons; 2 or 4 neurons is usually optimal.

4.4 Experimental results: others

We also tried to replace the neural network policy by some other parametric
policies such as fuzzy controllers, conformant planning, linear or quadratic con-
trollers. However, none of them could be combined with the expert policy as
efficiently as the neural network could.

Even more interestingly, when we combined two parametric policies, we could
at best approximately get the best of the two (or four in cases of recursive
combinations) but we never outperformed it. Furthermore, there was a clear
delay to reach this selection, which is a result comparable to [10].

5 Conclusions and further works

We proposed a simple tool for combining parametric DPS policies:

– Just one optimisation pass for both policies (though we might consider more
than two parametric policies);

– Usually quickly as good as the best of the considered policies;
– Sometimes much better.

Compared to separate learning, this makes the tool simpler (just one run) and
faster (no separate learning). Compared to algorithm selection methods as [10],
we can outperform both approaches, whereas classical algorithm selection can
only be equivalent to the best of the two methods.

300

Combining policies: the best of human expertise and neurocontrol 7

Fig. 1. Y-axis = reward. X-axis = learning budget. Hydroelectric valley. Noise-free
setting (i.e. all random processes are simplified to their average values). Each subplot
corresponds to a different number of neurons. 4: parametric expert function. .: neural
network. 5: combination. The combination outperforms both separate functions. Top:
large inflows. Bottom: small inflows.

301

8 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

Fig. 2. Hydroelectric network, noise-free setting. Top: large inflows. Bottom: low in-
flows. The combination (.) is a clear success in this case as well, though in the latter
case the expert function also performs very well.

302

Combining policies: the best of human expertise and neurocontrol 9

Fig. 3. Noisy setting, hydroelectric valley. Top: large inflow - the combination is ex-
cellent. Bottom: small inflows - the combination performs well; it does not always
outperform the best of both solvers, but we point out that just selecting the best of
two controllers takes more time than training them [10].

303

10 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

Fig. 4. Noisy setting, hydroelectric network. Top: large inflows. Bottom: small inflows.
Results are qualitatively similar to Fig. 3.

304

Combining policies: the best of human expertise and neurocontrol 11

We do not claim that we outperform portfolio methods, or at least not in
all cases. Maybe for combining large numbers of policies our method would fail
compared to portfolio methods. A limitation of our approach is that we can com-
bine various parametric policies, but we can not combine DPS and completely
different methods such as stochastic dual dynamic programming [18] or Monte
Carlo Tree Search [8, 15]. Also, the success of our method was not reproduced
with something else than the combination “expertise + neural networks”; we as-
sume that this is related to the orthogonality (the expert policy is very different
from the generic neural network). Still, the combination was very efficient in a
stable manner, outperforming both methods without additional cost and with-
out sophisticated developments. This was the case for 1, 2, 4, 8, 16, 32 neurons, in
all 8 sets of experiments (a deterministic and a stochastic case; a hydroelectric
valley and a hydroelectric random network; and two levels of inflows). Therefore
we consider that our simple combination (Eq. 2) should at least be considered
when combining policies.

Last, we point out a specific property of evolution strategies. In the case where
only one of the policies is relevant, then an optimization algorithm (evolutionary
or not) might quickly find the optimal extreme value for α in Eq. 2. Then,
the variables from the other policy have no impact on the objective function
anymore, due to the weight zero of the corresponding policy. As a consequence,
many variables become pointless, with no impact on the objective function. In
contrast to many optimization algorithms, many evolutionary algorithms are
not impacted by the presence of these pointless variables. Therefore, once α has
been tuned, the evolutionary algorithm might just optimize the parameters of
the relevant policy.

Combining four controllers was briefly considered in this work, without clear
results. We considered combinations of controllers with less orthogonality (fuzzy
systems, conformant planning, linear controllers) and results were far less con-
vincing; whereas for neural networks and handcrafted policies the combination
was already efficient. Extending the method in cases with less orthogonality
might be interesting, as well as validating the fact that orthogonality is crucial.

References

1. Astete-Morales, S., Liu, J., Teytaud, O.: log-log convergence for noisy optimization.
In: Proceedings of EA 2013. p. accepted. LLNCS, Springer (2013)

2. Astrom, K.: Optimal control of Markov decision processes with incomplete state
estimation. Journal of Mathematical Analysis and Applications 10, 174–205 (1965)

3. Baudis, P., Posik, P.: Online black-box algorithm portfolios for continuous opti-
mization. In: PPSN. pp. 40–49 (2014)

4. Bellman, R.: Dynamic Programming. Princeton Univ. Press (1957)
5. Bengio, Y.: Using a financial training criterion rather than a prediction criterion.

CIRANO Working Papers 98s-21, CIRANO (1998), http://ideas.repec.org/p/
cir/cirwor/98s-21.html

6. Beyer, H.G.: The Theory of Evolution Strategies. Natural Computing Series,
Springer, Heideberg (2001)

305

12 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

7. Christophe, J.J., Decock, J., Teytaud, O.: Direct model predictive control. In: Eu-
ropean Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN). Bruges, Belgique (Apr 2014), http://hal.inria.

fr/hal-00958192

8. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In P. Ciancarini and H. J. van den Herik, editors, Proceedings of the 5th
International Conference on Computers and Games, Turin, Italy pp. 72–83 (2006)

9. Doya, K., Samejima, K.: Multiple model-based reinforcement learning. Neural
Computation 14, 1347–1369 (2002)

10. Gagliolo, M.: Online Dynamic Algorithm Portfolios. Ph.D. thesis, ID-
SIA/University of Lugano, Lugano, Switzerland (March 2010), http://como.vub.
ac.be/~mgagliol/Gagliolo10PhD.pdf

11. Hamadi, Y.: Search: from Algorithms to Systems (HDR). Habilitation à diriger des
recherches, Université Paris-Sud (2013)

12. van Hasselt, H.P.: Insights in Reinforcement Learning: formal analysis and empiri-
cal evaluation of temporal-difference learning algorithms. Ph.D. thesis, Universiteit
Utrecht (January 2011), http://homepages.cwi.nl/~hasselt/papers/Insights_
in_Reinforcement_Learning_Hado_van_Hasselt.pdf

13. Heidrich-Meisner, V., Igel, C.: Hoeffding and bernstein races for selecting policies
in evolutionary direct policy search. In: ICML ’09: Proceedings of the 26th Annual
International Conference on Machine Learning. pp. 401–408. ACM, New York, NY,
USA (2009)

14. Kleinman, N.L., Spall, J.C., Naiman, D.Q.: Simulation-based optimization with
stochastic approximation using common random numbers. Management Science
45(11), 1570–1578 (1999), http://pubsonline.informs.org/doi/abs/10.1287/

mnsc.45.11.1570

15. Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning. In: 15th European
Conference on Machine Learning (ECML). pp. 282–293 (2006)

16. Marivate, V., Littman, M.: An ensemble of linearly combined reinforcement-
learning agents (2013), https://www.aaai.org/ocs/index.php/WS/AAAIW13/

paper/view/7025/6704

17. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random sat: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
Principles and Practice of Constraint Programming CP 2004, LLNCS 3258. vol.
3258 of Lecture Notes in Computer Science, pp. 438–452. Springer Berlin / Hei-
delberg (2004)

18. Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to
energy planning. Math. Program. 52(2), 359–375 (Oct 1991), http://dx.doi.org/
10.1007/BF01582895

19. Powell, W.B.: Approximate Dynamic Programming. Wiley (2007)
20. Samulowitz, H., Memisevic, R.: Learning to solve qbf. In: Proceedings of the 22nd

National Conference on Artificial Intelligence. pp. 255–260. AAAI (2007)
21. Stalph, P.O., Ebner, M., Michel, M., Pfaff, B., Benz, R.: Genetic and evolutionary

computation conference, gecco 2008, proceedings, atlanta, ga, usa, july 12-16, 2008.
In: Ryan, C., Keijzer, M. (eds.) GECCO. pp. 535–536. ACM (2008)

22. Strens, M., Moore, A.: Direct policy search using paired statistical tests. In: Pro-
ceedings of the 18th International Conference on Machine Learning. pp. 545–552.
Morgan Kaufmann, San Francisco, CA (2001)

23. Strens, M., Moore, A., Brodley, C., Danyluk, A.: Policy search using paired com-
parisons. In: Journal of Machine Learning Research. pp. 921–950 (2002)

306

Combining policies: the best of human expertise and neurocontrol 13

24. Zadeh, L.A.: The birth and evolution of fuzzy logic. Int. J. of General Systems pp.
95–105 (1990)

25. Zambelli, M., Soares Filho, S., Toscano, A.E., Santos, E.d., Silva Filho, D.d.:
NEWAVE versus ODIN: comparison of stochastic and deterministic models
for the long term hydropower scheduling of the interconnected brazilian sys-
tem. Sba: Controle & Automacao Sociedade Brasileira de Automatica 22, 598
– 609 (12 2011), http://www.scielo.br/scielo.php?script=sci_arttext&pid=
S0103-17592011000600005&nrm=iso

307

308

Frank Veenstra1, Alexander Struck1, Matthias Krauledat1

1Department of Technology and Bionics

Rhine-Waal University of Applied Sciences Kleve, Germany

1. Introduction
Evolutionary pressure has driven species of animals to develop efficient

locomotive behaviors by gradually changing their morphology and locomotive control.

One of the evolved locomotive strategies includes terrestrial legged locomotion that is

an efficient method for animals to traverse rough terrain making it an interesting feat to

apply in robotics. Most conventional optimization strategies used for acquiring

locomotive control are still inept to generate efficient stable locomotion and may be

improved by using additional bio-inspired methods. Optimizing legged locomotion in

robots is a difficult task as efficient legged locomotion is usually dynamically stable.

Locomotion is considered dynamically stable when an agent’s center of mass (COM)

is only temporarily above the support area of the legs during locomotion [1].

Abstract. The acquisition and optimization of dynamically stable locomotion

is important to engender fast and energy efficient locomotion in animals.

Conventional optimization strategies tend to have difficulties in acquiring

dynamically stable gaits in legged robots. In this paper, an evolving neural

network (ENN) was implemented with the aim to optimize the locomotive

behavior of a four-legged simulated robot. In the initial generation,

individuals had neural networks (NNs) that were either predefined or

randomly initialized. Additional investigations show that the efficiency of

applying additional sensors to the simulated quadruped improved the

performance of the ENN slightly. Promising results were seen in the

evolutionary runs where the initial predefined NNs of the population

contributed to slight movements of the limbs. This paper shows how a

predefined ENNs linked to bio-inspired sensors can optimize a locomotive

strategy for a simulated quadruped.

Keywords. Bio-inspired artificial intelligence; Evolving neural networks;

Legged locomotion; Quadruped evolution.

Acquiring Efficient Locomotion in a

Simulated Quadruped through Evolving

Random and Predefined Neural Networks

309

In animals, a nervous system consisting of innate (inborn) and learned

(acquired) types of behavior regulates locomotion [2]. Through implementing an

evolutionary algorithm that alters a neural network (NN), this paper shows that

applying predefined evolving neural networks (ENNs) to simulated and actual robots

is a promising bio-inspired optimization strategy for the generation of dynamically

stable locomotion.

A great diversity of neuroevolutionary strategies have been developed over

the past two decades [3,4,5,6,7]. Changing the topology and weights of NNs is a

commonly used strategy also known as Topology and Weight Evolving Artificial

Neural Networks (TWEANNs) [8]. Based on TWEANNs, optimization strategies like

NEuroevolution of Augmenting Topologies (NEAT) [9,8] and Evolution of Network

Symmetry and mOdularity (ENSO) [10] were developed to increase the efficiency of

TWEANNs. In this paper, no frameworks of other ENNs were used but instead an ENN

similar to a TWEANN was implemented to control and optimize the locomotion of a

simulated quadruped. Learning methods that adapt the synapses and weights of the NN

are not implemented in the ENN of this paper as fixed NNs tend to evolve quicker [11].

Although there is evidence suggesting that NEAT and ENSO are more efficient

strategies to apply compared to regular TWEANNs [9,10], these methods are not used

as the aim of this paper is to analyze acquisition of efficient locomotion based on

different initial NN states of the population. Comparative studies comparing the

effectiveness of the devised ENN with other neuroeolutionary strategies is out of the

scope of this paper but can be done in future investigations.

Central Pattern Generators (CPGs) are also often implemented for mimicking

animal locomotion [12]. In animals, CPGs provide rhythmic activation of muscles and

do not necessarily require any sensory input to function [13]. Various strategies mimic

the functionality of CPGs for the acquisition of gaits: Hopf oscillators, [14,15,16,17],

cyclic genetic algorithms (CGAs) [18], continuous-time recurrent neural networks

(CTRNNs) [19], compositional pattern producing networks (CPPNs) [20,21], and

hypercube-based neuroevolution of augmenting topologies (hyperNEAT) [21]. CPGs

applied to the ENN of this paper are simply defined by neurons that activate and

deactivate based on an evolvable timer and outputs of the NN.

The aim of this paper is to apply a several predefined NNs and bio-inspired

sensors to a simulated quadruped as neuroevolutionary optimization strategies in order

to evolve efficient locomotive behavior. Three types of predefined NNs (NNs that were

preprogrammed to have a certain morphology and thereby a distinct neural activation

pattern) were used to initialize various populations. Bongard [22] has shown that

initializing populations with behavior of robots that were formerly evolved using a

simpler physical morphology led to more rapid acquisition of robust locomotive

behavior compared to evolving the robot behavior of the more complex robot without

implementing the evolved behaviors of simpler robots. Similar results are expected

when rough estimations of simple predefined NNs are used to initialize a population.

310

2. Methods
The 3D robot model (Figure 1) was simulated in the robotics platform “Virtual

Robot Experimentation Platform” (V-REP) [23]. The 3D model of the quadruped is

based on feline morphology as cat-like quadrupeds are among the fastest animals alive.

The length of the cat is around 0.5 meters. Spring-like properties were able to arise as

PID controllers regulate the joint actuation. Notably, two spine joints mimic properties

of a flexible spine, which is a valuable feature for the high performance locomotion of

the Cheetah [16,24,25]. The open-source Bullet dynamics physics engine was used to

simulate the physics of the simulation. Based on feline morphology, the maximum

allowed angles of all 28 joints ranged from 30 to 180 degrees. Four types of sensors

were applied to give the simulated quadruped some bio-inspired feedback. These

sensors include proprioception, tactile feet sensors, an abstraction of the vestibular

system (the balance organ), and CPGs.

Unlike feedforward perceptrons [26], the applied NN’s hidden layer is

recurrent. The applied NN consisted of a variable number of input neurons (depending

on the sensors used) 150 interneurons in the hidden layer and 96 output neurons

connected to PID controllers and CPGs (to alter the CPGs timers and thus altering

activation speed). The equations below (Equation 1-5) explain how each layer in the

NN is updated. The activation levels of the sensory, inter- and motor neurons are

defined by Bi, Cj and Dk respectively. Ai and Ek define the sensory input and motor

output respectively. There are four types of weights for each type of possible

connection: weights from sensory neurons connected to interneurons (ϕ); weights from

interneurons connected to interneurons (χ); weights from sensory neurons connected to

motor neurons (ψ); weights from interneurons connected to motor neurons (ω). αj

represents the acquired activation levels of the interneurons. If αj passes the value of the

corresponding threshold level θj, the interneuron is activated. Finally, the decay factor

δ decreases the acquired activation levels of both interneurons and motor neurons. In

Vestibular

system

Proprioception

CPGs

Inter-

neurons

PID

controllers

Sensory

Input
Motor

Output

Signal

Processing

Foot Collision

sensors

Figure 2. Overview of the artificial neural network.

Arrows indicate where to neuron connectivity. Note

that the sensory input and the CPGs can also directly

connect to the Motor output layer.

Figure 1. The 3D model of the simulated

quadruped

311

all equations, the operator “:=” represents an update of the left hand side variable with

the term on the right hand side, as it is performed in each calculation for a new frame.

- Equation 1: Sensory neurons are always activated by sensory input and the

output of these sensory neurons is transformed into the activation level (Bi) of the ith

sensory neuron. Ai is the output value of the sensor connected to the ith sensory neuron.

- Equation 2: The acquired activation level (αj) of the jth interneuron is based on

the weights (𝜙𝑗𝑖) of the connected sensory neurons and the weights (𝜒𝑗𝑙) of other

connected interneurons. A decay factor, δ, decreases the acquired activation level of

the neuron over time so that continuously activated neurons limit their maximum

activation level.

- Equation 3: The interneurons are activated if the acquired activation level αj

of the jth interneuron is higher than the threshold 𝜃𝑗. 𝛩 represents the Heaviside step

function, i.e., 𝐶𝑗 = 0 if 𝛼𝑗 < 𝜃𝑗 and 𝐶𝑗 = 1 otherwise.

- Equation 4: The activation level of the motor neurons (Dk) is calculated similar

to the acquired activation level of the interneurons. ψjk represents the weight of the jth

sensory neuron connected to the kth motor neuron, ωkj represents the weight of the jth

interneuron connected to the kth motor neuron. However, motor neurons are, like

sensory neurons, always active, meaning no threshold function needs to be applied.

The decay factor, δ, limits the activation levels of the output neurons.

- Equation 5: The final equation describes how the factor (σk) scales the kth

motor neuron’s activation level (Dj) to a motor output value (Ek).

𝐵𝑖 ∶= 𝐴𝑖 (1)

𝛼𝑗 ∶=
1

𝛿
(𝛼𝑗 + ∑ 𝜙𝑗𝑖

𝑚
𝑖=1 𝐵𝑖 + ∑ 𝜒𝑗𝑙

𝑛
𝑙=1 𝐶𝑙) (2)

𝐶𝑗 ∶= 𝛩(𝛼𝑗 − 𝜃𝑗) (3)

𝐷𝑘 ∶=
1

𝛿
(𝐷𝑘 + ∑ 𝜓𝑘𝑖

𝑚
𝑖=1 𝐵𝑖 + ∑ 𝜔𝑘𝑗

𝑛
𝑗=1 𝐶𝑗) (4)

𝐸𝑘 ∶= 𝐷𝑘 ∗ 𝜎𝑘 (5)

The evolutionary algorithm alters the NN’s genotype through specific

mutations and a function mimicking chromosomal crossover [27]. The hereditary

information of the quadruped’s NN is stored in arrays containing all parameters of the

NN. Similar to TWEANNs, the mutations altered parameters such as the connections

of individual neurons, the weights attributed to these connections and the threshold

values that need to be surpassed before an interneuron is activated. The mutation rate

is variable depending on one of three types of mutations that can occur to enable both

large and subtle changes of the NN. The crossover function combines two NNs of two

individuals in a population by combining their interneurons before mutations occur

(25% probability). The genome of the quadruped stores the values of each neuron in

arrays that combine through crossover based on the specified assigned neuron number

in the array. A maximum of five crossover events could take place to create a new

interneuron layer for the offspring. Each neuron’s output is connected to at most 10

other neurons restricting the network’s topology. This limit is set as most neurons only

have one or a few axons [27].

312

 The population size used was 20 and parents were randomly chosen to

produce offspring asexually with the potential for crossover. Newly formed individuals

only replaced other individuals if their fitness was higher to the fitness value of a

randomly chosen individual of the population. Subsequent generations thus always

performed equally well or better than the previous ones. The fitness value was measured

by calculating the distance the quadruped had moved in a forward direction in five

seconds of simulation time.

Three predefined morphologies of NNs were used to initialize the population

of different evolutionary runs. The three predefined morphologies consisted of two

manually defined and one randomly defined morphology. One of the manually defined

morphologies produced a behavior where the joints were kept stationary (predefined

stationary) while the other produced slight movements in eight joints resembling a

precursor of a two-beat diagonal trot gait (predefined walking). An additional fitness

function was applied to the simulations running the predefined NNs to speed up the

evolutionary runs. This additional fitness function reduced overall simulation time by

resetting the simulation in occurrences of head to floor collisions. Simulation runs for

type of initial NN population were performed both with enabled and disabled sensory

input to evaluate the impact of sensors on the effectiveness of the ENN. For each

experiment, 10 deterministic simulations ran each using a different random seed.

3. Results
Differences in the progression of each type of ENN was notable between

different evolutionary runs (Figure 3). The evolutionary run of the predefined walking

NNs using sensors developed the best locomotive strategy for the simulated quadruped

in generation 1000 as its final generation moved significantly further (p < 0.05) than

the other types of evolutionary runs. The evolution of the population of quadrupeds

using the predefined stationary NN performed similar with and without using sensors.

There were slight but significant differences between the evolutionary runs the

randomly initialized NNs that did and did not use sensors (p < 0.05). No significant

differences were seen between the predefined stationary NNs using sensors and not

using sensors. Evolving the best evolved individual from generation 1000 of the

predefined walking run further for an additional 5000 generations showed better

performing NNs without any dramatic changes to the phenotype of the behavior [28].

All simulations initialized with a population of individuals with predefined

walking NNs evolved locomotive strategies that moved up to three times as far as the

other evolved NNs. From these evolved behaviors, some evolved a walking motion,

others included slight jumping movements and the best simulation evolved a crawling

motion that made the quadruped move by seemingly only using its two forelimbs

(Figure 4). The ENN also evolved useful strategies when not using sensors although

the evolutionary progression was generally slower. The predefined stationary NNs did

not evolve effective locomotion but rather evolved motions wherein the individual rolls

on its side preventing the head from colliding with the floor. The randomly initialized

313

NNs did not evolve any efficient locomotive strategies either as they evolved behaviors

consisting mostly of falling and rolling forward, and twitching.

4. Discussion
From evolving the different initial population states, the predefined walking

NNs evolved effective locomotion the quickest (Figure 3). All other evolutionary runs

evolved behaviors in which the locomotive phenotype of the fittest individual consisted

of either falling or rolling forward. These results suggest that initializing a population

with individuals displaying slight limb movements, resembling a desired movement,

greatly accelerates the evolution of the simulated quadrupeds’ NNs. The best

performing individual did not evolve a legitimate dynamically stable gait as its hind-

legs were not noticeable but were instead dragged across the floor (Figure 4). The

application of sensors did slightly increase the speed at which desired behaviors in the

randomly initialized and predefined sensing evolutionary runs.

Figure 4. The locomotion of the best evolved NN from generation 1000. t represents the time it took (in

seconds) for the quadruped to get to the particular location.

1.5m 0m

t = 0.0 t = 2.0 t = 5.0 t = 3.5

Figure 3: The graph shows the median of the performance of the ENN after 1000 generations. The fitness

value indicates the average movement of the population of simulated quadrupeds. The six lines represent the

median value of 10 evolutionary runs with different initial states. The initial states of each run were:

predefined walking NN using sensors (W+S), predefined walking NN not using sensors (W): predefined

stationary NN using sensors (S+S), predefined stationary NN without using sensors (S) random NN using

sensors (R+S) and random NN without using sensors (R). Black error bars represent the 1st and 3rd quartiles

and the dotted grey error bars represent the minimum and maximum values.

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

generation

Evolutionary Progression

W+S

W

S+S

S

R+S

R

314

The phenotypic change of an increase in fitness did not reveal any drastic

changes indicating that the evolved phenotypes were rather enhancements of

resembling previous phenotypes. Although the evolution of randomly initialized NNs

did not lead to the acquisition of efficient types of locomotion, the average fitness value

was ever increasing nonetheless. Even after 5000 generations, populations still evolved

into a better performing population [28]. However, evolving randomly initialized NNs

with the neuroevolution strategy described in this paper is a lot less efficient than

evolving predefined walking NNs.

Despite the limited amount of evolutionary runs and simulation time,

promising locomotive patterns arose when evolving predefined walking NNs. It may

be interesting to see what behavior arises when more generations, larger populations or

island populations are implemented. Moreover, competitive co-evolution [29,30],

morphological change [22], additional learning algorithms, genetic drift [31], evolving

the evolvability of agents [32], the application of incremental evolutionary methods

[33] are a few features that may enhance the performance of the ENN for acquiring

dynamically stable locomotion. As tendons play a huge role for animals to achieve

effective locomotion through the reuse of kinetic energy [34] applying abstractions of

tendons may prove useful.

The ENN presented in this paper is able to evolve dynamically stable gaits in

simulated quadrupeds the quickest when the initial population consists of predefined

NNs. Future research could indicate whether standardized predefined or evolved NNs

could be used for the rapid acquisition of efficient locomotive behavior in different

types of simulated and actual robots.

5. Conclusion
The designed ENN evolved effective locomotive gaits when predefined

walking NNs were used in the initial population. The ENN did not evolve particularly

efficient locomotion when using other initial states and evolved less efficient without

the implementation of sensors. The results thus indicate that predefining NNs greatly

increases the speed of the neuroevolutionary optimization processes for the acquisition

of dynamically stable gaits. Through improving the presented ENN and comparing it

to other neuroevolution strategies, the ENN discussed in this paper may serve as a

promising bio-inspired framework for the acquisition of dynamically stable locomotive

gaits in simulated robots.

References
1. Luksch, T.: Human-like Control of Dynamically Walking Bipedal Robots. (2009)

2. Bolhuis, J., Giraldeau, L.: The Behavior of Animals: mechanisms function and evolution. Blackwell Publishing
(2005)

3. Sims, K.: Evolving Virtual Creatures. Computer Graphics SIGGRAPH ‘94 Proceedings, 15-24 (1994)

4. Han, M., Fan, J., Han, B.: Evolving feedforward neural networks. International Joint Conference on Neural
Networks, 1083-1089 (2009)

5. Angeline, P., Saunders, G., Pollack, j.: An Evolutionary Algorithm that Constructs Recurrent Neural Networks.
IEEE Transactions on Neural Networks 5, 54-65 (1993)

6. Dasgupta, D., McGregor, D.: Designing Application-Specific Neural Networks using the Structured Genetic
Algorithm. Combinations of Genetic Algorithms and Neural Networks, 87-96 (1992)

315

7. Auerbach, J., Bongard, J.: On the Relationship Between Environmental and Morphological Complexity in
Evolved Robots. Proceedings of the 14th annual conference on Genetic and evolutionary computation 14, 521-
528 (2012)

8. Stanley, K., Miikulainen, R.: Efficient Evolution of Neural Network Topologies. Proceedings of the 2002
Congress on Evolutionary Computation (2002)

9. Stanley, K., Miikkulainen, R.: Evolving Neural Networks through Augmenting Topologies. Evolutionary
Computation 10(2), 99 - 127 (2002)

10. Valsalam, V., Miikkulainen, R.: Evolving Symmetry for Modular System Design. IEEE Transactions on
Evolutionary Computation 15(3), 368-386 (2011)

11. Stanley, K., Bryant, B., Miikkulainen, R.: Evolving Adaptive Neural Networks with and without Adaptive
Synapses. Proceedings of the 2003 IEEE Congress on Evolutionary Computation (2003)

12. Still, S., Hepp, K., Douglas, R.: Neuromorphic Walking Gait Control. IEEE Transactions on Neural Networks
17, 496-508 (2006)

13. Rossignol, S.: Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions
in the adult mammals. Phil. Trans. R. Soc. B 361, 1647-1671 (2006)

14. Barron-Zambrano, J., Torres-Huitzil, C.: Two-phase GA parameter tunning method of CPGs for quadruped
gaits. Proceedings of International Joint Conference on Neural Networks, 1767-1774 (2011)

15. Wu, X., Shao, X., Wang, W.: Gait Planning of Crossing Planar Obstacles for A Quadruped Robot. Robotics
and Biomimetics (ROBIO), 692-697 (2013)

16. Kani, M., Ahmadabadi, M.: Comparing effects of rigid, flexible, and actuated series-elastic spines on bounding
gait of quadruped robots. First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM),
282-287 (2013)

17. Ajallooeian, M., Puya, S., Sproewitz, A., Ijspeert, A.: Central Pattern Generators Augmented with Virtual
Model Control for Quadruped Rough Terrain Locomotion. IEEE International Conference on Robotics and
Automation (ICRA), 3321-3328 (2013)

18. Parker, G., Tarimo, W., Cantor, M.: Quadruped Gait Learning Using Cyclic Genetic Algorithms. IEEE
Congress on Evolutionary Computation (CEC), 1529-1534 (2011)

19. Beer, R.: On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior 3(4), 469-
509 (1995)

20. Stanley, K.: Compositional Pattern Producing Networks: A Novel Abstraction of Development. Genetic
Programming and Evolvable Machines Special Issue on Developmental Systems 8(2), 131-162 (2007)

21. Clune, J., Beckmann, B., Ofria, C., Pennock, R.: Evolving Coordinated Quadruped Gaits with the HyperNEAT
Generative Encoding. IEEE Congress on Evolutionary Computation, 2764 - 2771 (2009)

22. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior.
Proc.Natl.Acad.Sci.U.S.A. 108, 1234–1239.doi:10.1073/pnas. (2010)

23. Rohmer, E., Singh, S., Freese, M.: V-REP: a Versatile and Scalable Robot Simulation Framework. In : Proc.
of The International Conference on Intelligent Robots and Systems (IROS), Tokyo, pp.1321 - 1326 (2013)

24. Khoramshahi, M., Sprowitz, A., Tuleu, A., Ahmadabadi, M., Ijspeert, A.: Benefits of an Active Spine
Supported Bounding Locomotion With a Small Compliant Quadruped Robot. IEEE International Conference
on Robotics and Automation (ICRA), 3329-3334 (2013)

25. Folkertsma, G., Kim, S., Stramigioli, S.: Parallel stiffness in a bounding quadruped with flexible spine.
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2210-2215 (2012)

26. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain.
Psychological Review 65, 386-408 (1958)

27. Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantia, A.-S., McNamara, J., Williams, S.:
Neuroscience 3rd edn. Sinauer Associates, Inc, Massachusetts (2004)

28. Veenstra, F.: Evolving Dynamically Stable Locomotion in a Simulated Quadruped using Bio-Inspired
Artificial Intelligence, MSc. thesis. Rhine-Waal University of Applied Sciences, Kleve, Germany (2014)

29. Nolfi, S., Floreano, D.: Evolutionary Robotics. The MIT Press (2000)

30. Sims, K.: Evolving 3D Morphology and Behavior by Competition. Artificial Life IV Proceedings, 28-39
(1994)

31. Campbell, N., Reece, J.: Biology Eight edn. Pearson Education, San Francisco (2008)

32. Crombach, A., Hogeweg, P.: Evolution of Evolvability in Gene Regulatory Networks. Theoretical Biology
and Bioinformatics Group 4(7), 1-13 (2008)

33. Bongard, J.: Behavior Chaining: Incremental Behavior Integration for Evolutionary Robotics. Artificial Life
XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems
(2008)

34. Biewener, A.: Animal Locomotion. Oxford University Press., New York (2003)

316

317

Contourlet-Based Multispectral Image Fusion Using
Free Search Differential Evolution

Yifei Wang

Intelligent Systems Group, Department of Computer Science
University of Bath, Bath, BA2 7AY, United Kingdom

yifei.wang@computer.org

Abstract. In this paper, the multispectral image fusion task is converted into
an optimisation problem, to satisfy the objective of maximal injection of spatial
information with minimal spectral distortion. Contourlet transform (CT) is em-
ployed to extract the spatial high-frequency coefficients from PAN image and
they are weighted and injected into each band of the corresponding components
of multispectral data. The weighted coefficients are found by using the advanced
evolutionary intelligence technique called free search differential evolution (FSDE).
The novelty of this paper is to introduce FSDE for improved application of CT
for image fusion. The proposed method, CT-FSDE, was tested and compared with
principal component analysis (PCA), Laplacian pyramid (LP), wavelet transform
(WT), and CT over a WorldView-2 dataset. In order to study the effectiveness of
FSDE, I also compared it with two advanced evolutionary algorithms, JADE and
PS2O, which were developed from differential evolution and particle swarm opti-
misation, respectively. The quantitative results from conducted experiments show
that the proposed method provides high-quality spatial details and also preserves
spectral information well, which highlights the benefits of the proposed method
for multispectral image fusion.

1 Introduction

In order to extend the scope of the emerging remote-sensing technology application, im-
age fusion techniques have now been developed to integrate the information conveyed
by data acquired from multiple sensors with different spatial and spectral resolution [1].
A notable development is the fusion of multispectral (MS) and panchromatic (PAN) im-
ages. The image fusion techniques take advantage of the complementary spatial/spectral
characteristics for producing spatially enhanced MS observations [2]. Because of sev-
eral bands in MS, pixel-based fusion schemes have been recognised as one of the most
efficient tools to implement fusion of images at different resolutions. Generally, there
are two major groups of methods: spatial image fusion, such as principal component
analysis (PCA) [3], and multi-resolution image fusion, such as multi-resolution anal-
ysis (MRA) based on Laplacian pyramid (LP) [4] and wavelet transform (WT) [5].
Previous studies indicate that the MRA-based fusion methods have better performance
than the spatial-based fusion methods in many aspects, such as in the presence of noise
[6].

Recently, a new MRA scheme, contourlet transform (CT), was proposed by Do
and Vetterli [7]. CT is a nonseparable MRA, whose basis functions are directional

318

edges with progressively increasing resolution. The distinguished feature of the con-
tourlet transform is its capability of representing the multiscale and time-frequency-
localization properties of wavelets as well as offering a high degree of directionality
and anisotropy [8]. To be specific, CT includes basis functions that are oriented at any
power of two number of directions with flexible aspect ratios. Compared with wavelets,
the rich set of basis functions thus make contourlets represent a smooth contour with
fewer coefficients. However, like other MS fusion methods, such as PCA, LP, and WT,
CT introduces the spectral distortions to the original MS data. Generally, the MS im-
ages fusion can be regarded as an optimisation problem that we want to sharpen the MS
images with spatial information extracted from PAN image and preserve the spectral
information of original MS images as much as possible. Therefore, we need search for
a new robust optimisation tool to solve the problem.

Various new evolutionary algorithms have been proposed by researchers in the last
decade, such as genetic algorithms, particle swarm optimisation, and differential evo-
lution. These population-based algorithms are popular search techniques for solving
global optimisation problems with unknown structure to the objective function [9].
While these algorithms have been testified for their effectiveness both in theoretical
and practical aspects, each evolution algorithm has its own weaknesses. One common
drawback is that artifacts in most evolutionary algorithms cannot make free decisions to
adjust their behaviours to their environments because these algorithms have previously
modelled a system level decision process [10]. With this concern, Omran and Engel-
brecht proposed an effective algorithm, called free search differential evolution (FSDE)
[11], in which the individuals can make their own decisions based on various senses.
An individual level decision process is therefore embedded in the model concept of
free search (FS), which provides individuals with an ability of artificial thinking. FSDE
addresses the drawbacks of FS [12], and is easy to implement with high computation
efficiency and rapid convergence [11, 13].

In this paper, evolutionary intelligence, free search differential evolution (FSDE), is
introduced for image fusion using contourlet transform (CT). The proposed scheme is
noted as CT-FSDE in short. Specifically, the MS fusion task was converted into an op-
timisation problem, to satisfy the objective of maximal injection of spatial information
with minimal spectral distortion. CT is employed to extract the spatial high-frequency
information from PAN image. Then, the high-frequency coefficients of the PAN data
are weighted and injected into each band of the corresponding components of MS data.
The weighted coefficients are found for each band of the MS image by using FSDE.
CT-FSDE was tested and compared with PCA, LP, WT, and CT over the WorldView-2
dataset. In order to study the effectiveness of FSDE, I also compared it with two ad-
vanced evolutionary algorithms JADE [14] and PS2O [15], which were developed from
differential evolution and particle swarm optimisation, respectively. The quantitative
results highlight the benefits of the proposed method for MS image fusion.

The reminder of this paper is organised as follows. In Section 2, the proposed
method, CT-FSDE, is described in details. Experiments, results interpretation, and anal-
ysis are presented in Section 3. Finally, Section 4 gives a concise summary of this paper.

319

2 CT-FSDE Algorithm

In this paper, I proposed a new multispectral image fusion algorithm (CT-FSDE) which
employs contourlet transform (CT) [7] with an improved optimisation technique by in-
troducing free search differential evolution (FSDE) [11]. To be specific, the CT is em-
ployed to extract the spatial high-frequency information from the panchromatic (PAN)
data. Then, the high-frequency coefficients of the PAN data are weighted and injected
into each narrow band of the multispectral data. The weighted coefficients are calcu-
lated adaptively for each band by using FSDE.

2.1 Contourlet-Based MS Fusion

Let f (P)(x,y) be the dataset constituted by a single PAN image having finer spatial res-
olution with size X ×Y . Let { f (n)(x,y), n = 1,2, · · · ,N} be the dataset made up of N
bands of an MS image with size X̂ × Ŷ . Such bands have finer spectral resolution but
coarser spatial resolution. The issue of MS fusion is to obtain a set { f̃ (n)(x,y), n =
1,2, · · · ,N} of MS bands having the same spatial resolution as PAN data. The enhance-
ment of each band f (n) to yield the spatial resolution of f (P) is synthesised from the CT
of the PAN image. The MS bands { f (n)(x,y), n = 1,2, · · · ,N} are preliminarily inter-
polated by p (the scale ratio: p = X×Y

/
X̂× Ŷ) to match the scale of the PAN image.

A new dataset, { f̂ (n)(x,y), n = 1,2, · · · ,N}, is thus produced. Then, the CT coefficients
of each layer, extracted from f (P), are weighted and used to add to the corresponding
detail frames of f̂ (n). The fused MS dataset, { f̃ (n)(x,y), n = 1,2, · · · ,N}, is obtained by
summing the approximations and enhanced detail frames of each band.

2.2 Optimisation Objective Function for MS Fusion

The goal of MS fusion can be achieved by injection of high frequency coefficients
(HFCs) of PAN data. These HFCs, however, cannot simply replace the corresponding
coefficients extracted from each band MS image because they will bring the spectral
distortion to the original MS data. Therefore, the HFCs of PAN data have to be weighted
before injecting them into the MS data. In this paper, I employed FSDE to determine
the optimal weights automatically. Therefore, we need to build an objective function to
measure the quality of optimised weights. To be more specific, the initial weights are
randomly generated within (0,1), and then they are optimised by using FSDE.

In consideration of the computational burden, the image gradient is a simple and
direct criterion that effectively measures the “details” in an image. The high value of
gradient indicates the more “details” information, while the low value means the less
“details”. Let I(x,y) be the brightness value of the pixel located at (x,y) in an image.
The image gradient at (x,y) is defined as

‖∇I(x,y)‖=
√

∇I2
x (x,y)+∇I2

y (x,y), (1)

where

∇Ix(x,y) =
∂ I(x,y)

∂x
.
=

I(x+1,y)− I(x−1,y)
2

, (2)

320

and

∇Iy(x,y) =
∂ I(x,y)

∂y
.
=

I(x,y+1)− I(x,y−1)
2

. (3)

For all pixels, the average gradient measures the “details” in an image, which is given
as

∇I =
1

X×Y ∑
x

∑
y

√
‖∇I(x,y)‖2, (4)

where X ×Y represents the size of the image. Because the goal of FSDE is to find the
global minimum and large value of average gradient indicates better fusion results, the
objective function can be rewritten as

fopt(x,y) =
1

1+∇I
. (5)

The fopt can be regarded as the measurement of fusion results. When FSDE minimises
fopt , the maximal ∇I can be acquired. This process means the frequency coefficients
(FCs) of the PAN are injected into the MS data as much as possible.

2.3 Implementation of the Proposed Methodology

Let Ci, j(f (P)(x,y)) be the frequency coefficients (FCs) of the PAN data decomposed by
using CT at the ith level and the jth component, and let Ci, j(f̂ (n)(x,y)) be the corre-
sponding FCs of the nth band of MS image. The injection FCs, Ci, j(f̃ (n)(x,y)), can be
acquired by using the rule given as

Ci, j

(
f̃ (n)(x,y)

)
= wi, j×Ci, j

(
f (P)(x,y)

)
+ vi, j×Ci, j

(
f̂ (n)(x,y)

)
, (6)

where {wi, j} and {vi, j} are the weight coefficients, which are subject to

wi, j + vi, j = 1, (7)

where wi, j,vi, j ∈ (0,1). All the weight coefficients are the optima calculated by using
FSDE.

The implement details of CT-FSDE are described below.
Step 1: Each band of MS image, f̂ (n)(x,y), is decomposed by using the CT. Find

the FCs of each band, Ci, j(f̂ (n)(x,y)), at each level.
Step 2: PAN image, f (P)(x,y), preliminarily performs histogram matching with

each band of MS image, f̂ (n)(x,y). Then, the PAN images, { f (P)n (x,y), n = 1,2, · · · ,N},
are produced. The FCs of each f (P)n (x,y), Ci, j(fn

(P)(x,y)), are similarly calculated,
which are used for further injecting into f̂ (n)(x,y).

Step 3: For each band of MS image, Ci, j(f̂ (n)(x,y)) and Ci, j(fn
(P)(x,y)) are weighted.

The weighted coefficients are calculated by using FSDE with the goal of minimizing the
objective function in Eq. (5). Then, the fusion coefficients, Ci, j(f̃ (n)(x,y)), are obtained
by using Eq. (6).

Step 4: The fused MS dataset, { f̃ (n)(x,y), n = 1,2, · · · ,N}, is obtained by using in-
verse CT, reconstructed by the approximations of each band f̂ (n)(x,y) and the enhanced
Ci, j(f̃ (n)(x,y)).

321

3 Experiments & Results

3.1 Fusion Result Evaluation Criteria

To be able to quantify the quality of the fusion results, I use a broad variety of seven
different quality metrics which are common in literature for fusion evaluation purposes.
To be specific, the following evaluation criteria were used: the signal to noise ratio
(SNR) [16], discrepancy index (DI) [17], relative dimensionless global error in synthe-
sis (ERGAS) [18], universal image quality index (UIQI) [19], correlation coefficient
CC [20].

3.2 Dataset Depiction

The proposed CT-FSDE based fusion procedure has been assessed on the very high-
resolution image dataset collected by WorldView-2. This dataset displays the urban
of Rome, in Italy, and was acquired in Dec. 2009. The WorldView-2 provides a high
resolution PAN band and 8 MS bands spanning 4 standard colours (red, green, blue,
and near-infrared 1) and 4 new bands (coastal, yellow, red edge, and near-infrared
2). The wavelengths of 8 bands are spectrally disjoint: coastal blue (400−450nm),
blue (450−510nm), green (510−580nm), yellow (585−625nm), red (630−690nm), red
edge (705−745 nm), near-infrared 1 (770−895nm), and near-infrared 2 (860−1040nm).

The used dataset is geometrically and radiometrically calibrated. It is available
as geocoded product, re-sampled to uniform ground resolutions of 2m (MS) − 0.5m
(PAN). All pixel values are packed in 16-bit words. The original PAN image is of size
4600× 4604, while the original MS images of size 1150× 1151 with each band. Sub
regions in MS data of size 200×200 and PAN data of size 800×800 around the Colos-
seum were analysed.

To allow quantitative distortion measures to be achieved, the PAN image and MS
images are preliminarily decimated by 4, to yield 2m PAN − 8m MS. Such spatially
degraded data are used to re-synthesize the 8 spectral bands at 2m. Thus, the true 2m
200× 2̄00 MS data are available for objective distortion measurements.

3.3 Results & Analysis

The experiments are conducted on the degraded MS data with pixel resolution of 8 m
and degraded PAN data with pixel resolution of 2 m for the WorldView-2 dataset. Prin-
cipal component analysis (PCA), Laplacian pyramid (LP), wavelet transform (WT), and
contourlet transform (CT) are employed to decompose every image in three levels, con-
sidering that the used image size is of 200×200. I also use two advanced evolutionary
algorithms JADE and PS2O proposed in [14] and [15], respectively, to compare against
the effectiveness of using FSDE in the proposed algorithm. For fair comparison, I set
the all the parameters and used filters in all comparison algorithms to be fixed for the
two investigated datasets. For LP, the “PKVA” filter is used; for WT, the DB4 filter is
used; for CT and comparison algorithm based on CT, the “9/7” filter and the “PKVA”
filter are used. For CT-based MS image fusion using JADE (CT-JADE), I set the con-
stants p = 0.2 and c = 0.1. For CT-based MS image fusion using PS2O (CT-PS2O), I

322

set the number of swarms n = 5, C1 and C2 both 2.05, C3 = 2.0, the constriction fac-
tor χ = 0.729, and the maximum velocity was set to be 50% of the search space. For
CT-FSDE, there is no extra parameter to be set. The values of common parameters for
CT-JADE, CT-PS2O, and CT-FSDE were set as follows: the population NP = 30 and
the maximum iteration times G = 500. It should be noted that I just present the com-
parison on the quantitative results because fused images are similar which might not be
distinguished by visual comparison, and it is more objective.

In the conducted experiments for the WorldView-2 dataset, the reported quantitative
results are SNRs, DIs, UIUQs, ERGASs, and CCs in Tables 1 and 2, in which the
best results for each quality measure are labeled in bold. The SNR is a direct index to
compare the fused image with the reference MS image. Table 1 shows that the proposed
method provides the highest SNR values for all the eight bands. The DI yields a global
measurement of spectral distortion of the fused images. The results shows that the CT-
FSDE method gives the lowest DI in B1, B2, B7, and B8, while CT-PS2O just has a
weak advantage on the rest four bands compared with the results achieved by CT-FSDE.
From Table 1, we can see that the proposed method gives the best results for ERGAS.
Since ERGAS only consider root mean square error, and DI only considers spectral
distortion, a more comprehensive measure of quality UIQI has been developed to test
both spectral and spatial qualities of the fused images. From Table 2, we can see that the
proposed method only loses the B3, B4, and B5 for the UIQI, but it is almost the same
between the best results acquired by using CT-PS2O. We can also see that the proposed
method gives the lowest CC values for all the eight bands. This is mainly due to the
advantage of the proposed scheme over other comparable methods that uses FSDE to
calculate the weighted coefficients adaptively when the information extracted from the
PAN data is injected into the MS data. Thus, the reconstructed fused MS images can
preserve well both spatial and spectral information of the source images.

4 Conclusions

A new approach of MS fusion method based on discrete contourlet transform using
free search differential evolution are presented and assessed. Compared with traditional
methods (PCA, LP, WT, and CT) which often introduce the spectral distortions to the
original MS images, the proposed method performs better by converting MS fusion is-
sue into an optimisation problem to meet the goal of maximising spatial information
abstracted from PAN data while minimising spectral distortion. Specifically, the low-
resolution MS bands are resampled to the scale of the PAN image and sharpened by
injecting highpass directional details extracted from the high-resolution PAN image.
Here, the highpass directional details are weighted before injecting into each band of
the MS image. The image gradient is employed as the rule for calculating the weighted
coefficients because it is a simple and direct criterion that measures the “details” in an
image, and its computational burden is low. Then the objective function can be built
based on the image gradient, which is further optimised by using evolutionary intel-
ligence, FSDE. FSDE is an effective population-based continues global optimisation
technique, which is easy to implement. Because of its high computation efficiency and
rapid convergence, FSDE can be expected to present good performance on optimising

323

the objective function in MS fusion. The proposed method, CT-FSDE, was tested and
compared with PCA, LP, WT, and CT over the WorldView-2 dataset. I also used two
advanced evolutionary algorithms JADE and PS2O to compare against the effectiveness
of using FSDE in the proposed algorithm. The results show that CT-FSDE achieves the
best results in terms of overall performance. The proposed algorithm not only provides
high-quality spatial details but also preserves spectral information well. However, it
should be noted that the performance will be better by using PAN data that covers the
wavelengths of most MS bands. Using PAN data that only covers the wavelengths of a
few MS bands might bring spectral distortion to the fused MS images.

Table 1. Results Comparison on SNR, DI and UIUQ

B1 B2 B3 B4 B5 B6 B7 B8 Mean

PCA

SNR 8.1678 8.0287 7.8444 7.5859 7.1431 8.3757 8.1930 8.3727 7.9639
DI 17.7855 17.0747 16.5178 17.5091 17.4937 20.9749 24.3356 24.4559 19.5184

UIUQ 0.7146 0.7283 0.7539 0.7411 0.7508 0.7836 0.8004 0.8024 0.7594

LP

SNR 8.7427 8.6306 9.1818 8.5886 8.2141 9.3428 8.2301 8.4547 8.6732
DI 17.8031 17.3248 15.8293 17.2264 17.3174 21.3262 26.6042 26.5925 20.0030

UIUQ 0.7929 0.8082 0.8554 0.8350 0.8436 0.8645 0.8433 0.8455 0.8361

WT

SNR 8.7816 8.6417 9.1445 8.5706 8.1854 9.3673 8.2724 8.5019 8.6832
DI 17.5546 17.0373 15.5597 16.9205 16.9642 21.0060 26.1354 26.1254 19.6629

UIUQ 0.7958 0.8093 0.8544 0.8349 0.8431 0.8653 0.8449 0.8471 0.8369

CT

SNR 8.7666 8.6861 9.2783 8.6570 8.2834 9.4529 8.2710 8.4968 8.7365
DI 17.5833 16.9926 15.3710 16.8131 16.8858 20.8640 26.1815 26.1734 19.6081

UIUQ 0.7927 0.8094 0.8577 0.8367 0.8453 0.8672 0.8437 0.8459 0.8373

CT-JADE

SNR 7.4449 7.3938 7.5518 7.2879 6.6043 7.8677 6.6475 7.0689 7.2333
DI 20.8662 20.4282 18.7338 19.6190 20.4036 24.9724 31.4635 30.6726 23.3949

UIUQ 0.7335 0.7593 0.7996 0.7876 0.7834 0.8186 0.7871 0.7954 0.7831

CT-PS2O

SNR 8.5134 8.4965 9.8781 9.0661 8.5328 9.7454 7.7895 7.5540 8.6970
DI 18.0222 17.6529 13.7962 15.4138 15.5783 19.7136 26.8069 27.7294 19.3392

UIUQ 0.7733 0.7978 0.8729 0.8476 0.8501 0.8720 0.8186 0.8017 0.8293

CT-FSDE

SNR 9.8729 9.5760 9.9448 9.3089 8.6311 9.9873 9.0086 9.2648 9.4493
DI 15.3130 15.2818 14.3599 15.6363 16.3806 19.8513 24.1886 24.0716 18.1354

UIUQ 0.8221 0.8314 0.8705 0.8471 0.8450 0.8762 0.8581 0.8608 0.8514

Table 2. Results Comparison on ERGAS and CC

PCA LP WT CT CT-JADE CT-PS2O CT-FSDE

ERGAS 241.2568 192.0876 192.1080 190.8240 227.0342 192.7621 176.1888
CC 0.1409 0.0989 0.0967 0.1031 0.0584 0.1855 0.0384

324

References

1. Nencini, F., Garzelli, A., Baronti, S., Alparone, L.: Remote sensing image fusion using the
curvelet transform. Information Fusion 8(2) (2007) 143–156

2. Yifan, Z., De Backer, S., Scheunders, P.: Noise-resistant wavelet-based bayesian fusion of
multispectral and hyperspectral images. Geoscience and Remote Sensing, IEEE Transactions
on 47(11) (2009) 3834–3843

3. Pansharp vs. wavelet vs. PCA fusion technique for use with Landsat ETM panchromatic and
multispectral data. Volume 5573. (2004)

4. Aiazzi, B., Alparone, L., Baronti, S., Lotti, F.: Lossless image compression by quantization
feedback in a content-driven enhanced laplacian pyramid. Image Processing, IEEE Transac-
tions on 6(6) (1997) 831–843

5. A wavelet based algorithm for pan sharpening Landsat 7 imagery. In: IGARSS ’01. IEEE
International. Volume 2. (2001)

6. Nikolakopoulos, K.G.: Comparison of Nine Fusion Techniques for Very High Resolution
Data. Volume 74. American Society for Photogrammetry and Remote Sensing, Bethesda,
MD, ETATS-UNIS (2008)

7. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution
image representation. Image Processing, IEEE Transactions on 14(12) (2005) 2091–2106

8. Shah, V.P., Younan, N.H., King, R.L.: An efficient pan-sharpening method via a combined
adaptive pca approach and contourlets. Geoscience and Remote Sensing, IEEE Transactions
on 46(5) (2008) 1323–1335

9. Wang, Y., Yin, J.: Intelligent search optimized edge potential function (epf) approach to
synthetic aperture radar (sar) scene matching. In: CEC ’14 IEEE Congress on. (July 2014)
2124–2131

10. Yin, J., Wang, Y., Hu, J.: A new dimensionality reduction algorithm for hyperspectral image
using evolutionary strategy. Industrial Informatics, IEEE Transactions on 8(4) (Nov 2012)
935–943

11. Omran, M.G.H., Engelbrecht, A.P.: Free search differential evolution. In: CEC ’09. IEEE
Congress on. 110–117

12. Penev, K., Littlefair, G.: Free search — a comparative analysis. Information Sciences
172(1C2) (2005) 173–193

13. Yin, J., Wang, Y., Hu, J.: Free search with adaptive differential evolution exploitation and
quantum-inspired exploration. Journal of Network and Computer Applications 35(3) (2012)
1035–1051

14. Zhang, J., Sanderson, A.: Jade: Adaptive differential evolution with optional external archive.
Evolutionary Computation, IEEE Transactions on 13(5) (Oct 2009) 945–958

15. Chen, H., Zhu, Y., Hu, K., Ku, T.: Rfid network planning using a multi-swarm optimizer.
Journal of Network and Computer Applications 34(3) (2011) 888 – 901

16. Yifan, Z., Mingyi, H.: 3d wavelet transform and its application in multispectral and hyper-
spectral image fusion. In: ICIEA ’09. IEEE Conference on. 3643–3647

17. Li, S., Kwok, J.T., Wang, Y.: Using the discrete wavelet frame transform to merge landsat
tm and spot panchromatic images. Information Fusion 3(1) (2002) 17–23

18. Wald, L.: Quality of high resolution synthesised images: Is there a simple criterion? In:
Fusion of Earth data: Merging point measurements, raster maps and remotely sensed images,
SEE/URISCA 99–103

19. Zhou, W., Bovik, A.C.: A universal image quality index. Signal Processing Letters, IEEE
9(3) (2002) 81–84

20. Vijayaraj, V., O’Hara, C., Younan, N.: Quality analysis of pansharpened images. In: IGARSS
’04. IEEE International. Volume 1. (Sept 2004) 88

325

326

A GPU-based parallel neighborhood evaluation
for ITSSD

Omar Abdelkafi, Lhassane Idoumghar, Julien Lepagnot, and Mathieu
Brévilliers

Université de Haute-Alsace (UHA)
LMIA (E.A. 3993)

4 rue des frères lumière, 68093 Mulhouse, France
{omar.abdelkafi, lhassane.idoumghar, julien.lepagnot,

mathieu.Brevilliers}@uha.fr

Abstract. In this study, we propose a parallel evaluation of neighbor-
hoods based on GPU for the iterative tabu search with a strategy of
diversification (ITSSD) to solve large neighborhood instances. This al-
gorithm is experimented on the quadratic assignment problem (QAP).
The parallel evaluations of neighborhood is able to reduce the execution
time with large neighborhood instances. A comparison with the robust
tabu search (Ro-Ts) is performed using 20 instances of size 343. A set of
new results are proposed.

Keywords: Metaheuristics, tabu search, GPU, Quadratic assignment
problem, CUDA.

1 Introduction

The Quadratic assignment problem (QAP) is an NP-hard problem. It is well
known for its multiple applications. Many practical problems in electronic, chem-
istry, transport, industry and many others can be formulated as QAP. Works on
some significant applications of this problem have appeared such as [1][2]. The
QAP was first introduced by Koopmans and Beckmann [3] to model a facility
location problem. It can be described as the problem of assigning a set of fa-
cilities to a set of locations with given distance and flow between locations and
facilities respectively. The objective is to place the facilities on locations in such
a way that the sum of the products between flows and distances is minimized.
The problem can be formulated as follows:

min
p∈P

z(p) =
n∑

i=1

n∑

j=1

fijdp(i)p(j) (1)

where f and d are the flow and distance matrices respectively, p ∈ P repre-
sents a solution where pi is the location assigned to facility i and P is the set of

327

all n vector permutations. The objective is to minimize z(p), which is the total
cost assignment for the permutation p.

In this work, we propose a parallel evaluation of neighborhood with GPU to
solve large neighborhood instances. The rest of the paper is organized as follows.
In section 2, we review some of the best-known approaches to solve the QAP and
some GPU programming bases. In section 3, we describe the sequential design
of the Iterative Tabu Search with a Strategy of Diversification (ITSSD) to solve
the QAP. Section 4 presents the parallel kernel used to execute the parallel
evaluation of costs. Section 5 shows the experimental results of a set of QAPLIB
instances and some new results for large problem instances. Finally, in section
6, we conclude the paper and we propose some perspectives.

2 Background

One of the first efficient approach to solve the QAP is the robust tabu search
(Ro-Ts) proposed by Taillard in 1991 [4]. It reduces significantly the complexity
of the algorithm with the use of delta matrix. Many other works are based on
Ro-Ts to solve the QAP like [5].

The GPU architecture is very well designed for the parallel model and it is
very powerful on arithmetic computation like the neighborhood evaluation inside
the delta matrix. However, GPU requires some additional instructions that may
reduce its efficiency especially for small size instances. Example of this additional
work is the transfer between the host and the device which consumes time.
Another example is the use of code like If-Else or loops inside the kernel which
can create a divergence of threads. More information on the GPU programming
model can be found in [6].

In CUDA programming, the execution on GPU is conducted by the kernel.
It is a code called from the CPU (the host) and duplicated on the GPU (the
device) to run in a parallel way. The kernel is executed in a grid, which is a set
of blocks where every block is a set of threads.

Very few metaheuristics works used the GPU to solve the QAP [7][8][9].
At the best of our knowledge, the most recent work is [10], published in 2013.
They worked on a Parallel Multi-start Tabu Search (TS) to solve the QAP using
the CUDA platform. Good quality solutions are obtained but only with the 13
instances of J. Skorin-Kapov [11] and the biggest instance size is 100. The focus
of [10] is the acceleration factors.

3 Design of the sequential ITSSD

The ITSSD approach follows the general scheme of the Iterative Tabu Search
(ITS). In each global iteration, a TS is performed from a different initial solution.
The objective is to find the best initial solution to improve results. In every global
iteration of the ITS, a diversification is applied to the global best solution. The
diversification used in this work is proposed by Glover [12]. The aim is to discover
a new promising region for the exploration of the TS. The use of the global best

328

solution structure allows the algorithm to explore intelligently the search space
and to reach a promising region of the search space.

The ITSSD uses the search history to apply perturbations as a preventive
measure. A counter w is initialized with 0 and, at each global iteration without
improvement, the counter w is incremented. If there is an improvement, w is
reset to 0. The solution is perturbed after a set of global iterations without
improvement. This way, if the algorithm is trapped inside a region of the space,
in addition to the usual diversification, a part of the solution is perturbed to
unlock the search. If w continues to grow, a complete re-localization is needed
to explore other regions of the search space.

Algorithm 1 is the pseudo-code of the ITSSD. More information about the
TS can be found in [4].

Algorithm 1 the general ITSSD algorithm:

1: Input : perturb: % perturbation; n: size of solution; f and d flow and distances
matrices respectively; cost: cost of the current solution; Fcost: best cost found;
solution: current solution; Fsolution: best solution found; L1,L2: thresholds for
preventive measures;

2: Initialization of the solution
3: w = 0; /* is the counter to define the search history state */
4: Stagnancy = false;
5: repeat
6: TS algorithm
7: if cost < Fcost then
8: /* improvement */
9: Stagnancy = false; w = 0; Fcost = cost ;

10: Update the Fsolution with solution;
11: else
12: w++;
13: end if
14: /* Condition of stagnancy */
15: if w == L2 then
16: Stagnancy = true;
17: end if
18: if Stagnancy == false then
19: /* no stagnancy */
20: Update solution with a Diversification of Fsolution;
21: else
22: /* Stagnancy */
23: Re-localization of solution;
24: Stagnancy = false;
25: w = 0;
26: end if
27: if w == L1 then
28: Perturbation of solution with the perturb parameter;
29: end if
30: until (Stop condition)

329

4 Parallel evaluation of neighborhoods

To evaluate the two-exchange move, the TS uses a matrix named delta matrix
to store the cost associated to all the possible swaps in the current permutation.
These values inside the delta matrix can then be added to the original cost
of the permutation to obtain the costs of the new neighborhoods. This fast
computation reduces the complexity required to evaluate the swap neighborhood.
More explanation on this method can be found in [4][5].

The most expensive part in computation time of the ITSSD is the evaluation
of the two exchange moves. In our work, each thread represents a two exchange
move. Indeed, all the moves are evaluated in parallel using the computation
power of the GPU. Only two kernels are created to evaluate the neighborhood in
parallel. kernel (g compute delta) is used to initialize the first costs of neighbor-
hoods in the delta matrix and kernel (g update delta) is used to update the delta
matrix in each TSiteration (iteration performed by the TS). Algorithm 2 and
algorithm 3 represent respectively the g update delta and the g compute delta.

These algorithms are executed in parallel for all the threads. For the instance
size n, we generate n× n threads.

Algorithm 2 the update delta kernel:

1: Input : n: the size of the instance; p: the current solution; delta: the delta matrix;
f and d: the flow and distance matrix respectively; iretained, jretained: the best
moves;

2: Get the index of the thread idx; /*each idx represent one two-exchange move*/
3: i = bidx/nc;
4: j = idx mod n;/* i and j represent the indexes to compute the move */
5: if i < j then
6: if i 6= iretained and i 6= jretained and j 6= iretained and j 6= jretained then
7: z = delta[idx] + (f[iretained×n+i] - f[iretained×n+j] + f[jretained×n+j]

- f[jretained×n+i]) × (d[p[jretained]×n+p[i]] - d[p[jretained]×n+p[j]]
+ d[p[iretained]×n+p[j]] - d[p[iretained]×n+p[i]]) + (f[i×n+iretained]
- f[j×n+iretained] + f[j×n+jretained] - f[i×n+jretained]) ×
(d[p[i]×n+p[jretained]] - d[p[j]×n+p[jretained]] + d[p[j]×n+p[iretained]]
- d[p[i]×n+p[iretained]]);

8: else
9: z = (f[i×n+i] - f[j×n+j]) × (d[p[j]×n+p[j]] - d[p[i]×n+p[i]]) + (f[i×n+j] -

f[j×n+i]) × (d[p[j]×n+p[i]] - d[p[i]×n+p[j]]);
10: for k:=0 to n do
11: if k 6= i and k 6= j then
12: z = z + (f[k×n+i] - f[k×n+j]) × (d[p[k]×n+p[j]] - d[p[k]×n+p[i]]) +

(f[i×n+k] - f[j×n+k]) × (d[p[j]×n+p[k]] - d[p[i]×n+p[k]]);
13: end if
14: end for
15: end if
16: delta[idx] = z;
17: end if

330

Algorithm 3 the compute delta kernel:

1: Input : n: the size of the instance; p: the current solution; delta: the delta matrix;
f and d: the flow and distance matrix respectively;

2: Get the index of the thread idx; /*each idx represent one two-exchange move*/
3: i = bidx/nc;
4: j = idx mod n; /* i and j represent the indexes to compute the move */
5: if i < j then
6: z = (f[i×n+i] - f[j×n+j]) × (d[p[j]×n+p[j]] - d[p[i]×n+p[i]]) + (f[i×n+j] -

f[j×n+i]) × (d[p[j]×n+p[i]] - d[p[i]×n+p[j]]);
7: for k:=0 to n do
8: if k 6= i and k 6= j then
9: z = z + (f[k×n+i] - f[k×n+j]) × (d[p[k]×n+p[j]] - d[p[k]×n+p[i]]) +

(f[i×n+k] - f[j×n+k]) × (d[p[j]×n+p[k]] - d[p[i]×n+p[k]]);
10: end if
11: end for
12: delta[idx] = z;
13: end if

These kernels need information transfer between the host and the device.
Before every kernel execution, the current solution p is transferred from host
to device to be used in the computation of the delta matrix. After every kernel
execution, the delta matrix is transferred from device to host to find the best
two-exchange move.

5 Experimental results

5.1 Platform and tests

In our experimentation, the algorithm is written in C/C++. It is compiled on
an Intel Core processor i5-3330 CPU (3.00GHz) 4 GB of RAM and an NVIDIA
GeForce GTX680 GPU. The proposed algorithm is experimented on benchmark
instances from the QAPLIB [13] and instances from [14]. The size of the instances
varies between 20 and 343. All the results are expressed as a percentage deviation
from the best known solutions (BKS) (eq 2).

deviation =
(solution−BKS)× 100

BKS
(2)

The QAPLIB archive comprises 136 instances that can be classified into four
types: Real life instances (Type 1); Unstructured randomly generated instances
based on a uniform distribution (Type 2); Randomly generated instances similar
to real life instances (Type 3); Instances in which distances are based on the
Manhattan distance on a grid (Type 4);

Every instance is executed 10 times and the average of these execution is
given in the experiments. Only the percentage deviation is considered in the
comparison. The time is given for information purposes only.

331

5.2 Experimentation of the parallel ITSSD approach

The first experimentation is presented in table 1. The parallel ITSSD algorithm
is compared to the work of T. James et al [5]. Table 1 presents the 3 best variants
of their work.

The stopping criterion is set to 50000×n as mentioned in [5]. For this reason,
the same number of objective function evaluations is used for ITSSD. The time
in table 1 is computed in seconds and the number in brackets with the deviation
is the number of runs where the algorithm reached the BKS.

The aim of this experimentation is to demonstrate the efficiency of the par-
allel version of the ITSSD against works from the literature. The same quality
of solution is obtained between sequential and parallel version. The sequential
version consumes less time than the parallel version for instance size between 20
and 100 which is normal for such small size instances. The aim of our parallel
version is to reduce the computation time for large neighborhood instances.

Table 1. Parallel ITSSD RESULTS

Instances BKS
ITSSD TTMTS BSFTS divTS

deviation times deviation times deviation times deviation times
sko81 90998 0.003(9) 99.407 0.017 62.36 0.023 56.25 0.016 56.36
sko90 115534 0.012(0) 1028.629 0.017 99.69 0.013 92.08 0.026 89.60

sko100a 152002 0.036(1) 1234.106 0.026 134.53 0.024 132.80 0.027 129.22
sko100b 153890 0.011(0) 1298.457 0.011 124.84 0.010 113.02 0.008 106.55
sko100c 147862 0.001(0) 1290.869 0.008 113.95 0.010 107.90 0.006 126.69
sko100d 149576 0.015(3) 1028.149 0.016 129.23 0.011 121.98 0.027 123.45
sko100e 149150 0.014(0) 1296.826 0.007 130.14 0.011 115.62 0.009 108.84
sko100f 149036 0.016(0) 1295.274 0.021 118.90 0.012 127.00 0.023 110.28

tai40a 3139370 0.099(0) 190.656 0.284 5.22 0.311 4.81 0.222 5.16
tai50a 4938796 0.597(0) 302.625 0.700 10.07 0.685 10.46 0.725 10.23
tai60a 7205962 0.623(0) 451.616 0.820 25.92 0.752 20.65 0.718 25.69
tai80a 13515450 0.782(0) 848.055 0.817 69.21 0.841 54.61 0.753 52.74
tai100a 21052466 0.765(0) 1349.022 0.846 145.26 0.848 129.73 0.825 142.06
Stopping condition 500× n× 100 50000× n

Using the same number of objective function evaluations, For the 13 instances
experimented, our algorithm outperforms the variants of [5] for 7 instances tested
against 3 for BSFTS, 2 for divTS and 1 for TTMTS.

5.3 New results experimentation

The aim of this section is to produce some new results on large neighborhood
instances. The time is computed in seconds and the saved time is computed
in hours. Table 2 presents the execution for the large neighborhood instances.
Instances of size 343 are used in this experiment. At the best of our knowledge,
only the works [15] and [16] solve one of these instances. In these two works the
tai343e01 is solved. Instances of size 343 are considered very hard to solve even
for metaheuristics.

Since no optimal results are proposed in the literature, we compare our work
with the well known Ro-Ts. The deviation with Ro-Ts (Dv) is computed in
equation 3:

332

Dv =
(solution−ROTSvalue)× 100

ROTSvalue
(3)

The number of constraints is computed for each instance to give an idea of
the problem complexity. The TSav is computed in hours.

Table 2. Results for large neighborhood instances

Instances(20) BKS constraints
Ro-Ts Parallel ITSSD

Value times(s) value timesGPU(s) Dv (%) TSav (H)
tai343e01 136288 61202 190228.2 49493.383 147895.8 39235.397 -22.25 2.85
tai343e02 - 61294 162733.8 48383.697 156859.6 39535.154 -3.61 2.46
tai343e03 - 61052 152729.2 48499.189 146544 40088.849 -4.05 2.34
tai343e04 - 61370 171786.2 48366.099 161011 39275.139 -6.27 2.53
tai343e05 - 61170 153593.4 47313.967 146883.8 38691.020 -4.37 2.40
tai343e06 - 61216 171394.4 48319.116 148452.8 39315.878 -13.39 2.50
tai343e07 - 61250 197057 49439.529 152580.6 39098.073 -22.57 2.87
tai343e08 - 61122 165106.8 48352.558 137062.4 39303.576 -16.99 2.51
tai343e09 - 61226 152292 49707.625 144293.8 39464.794 -5.25 2.85
tai343e10 - 61246 161535.8 48375.878 154604.4 39644.562 -4.29 2.43
tai343e11 - 61224 178858.2 50427.912 152247 39324.431 -14.88 3.08
tai343e12 - 61454 168727.4 48367.672 161398.6 38806.946 -4.34 2.66
tai343e13 - 61076 200308 50381.333 136253.6 39653.835 -31.98 2.98
tai343e14 - 61226 158464.4 48509.187 149770 38970.164 -5.49 2.65
tai343e15 - 61272 166484 48567.870 158271 39313.319 -4.93 2.57
tai343e16 - 61314 164710.2 50794.149 155393.8 39433.743 -5.66 3.15
tai343e17 - 61002 140094.2 53692.975 135135 39762.108 -3.54 3.87
tai343e18 - 61056 144424.6 48589.895 138247 39450.774 -4.28 2.54
tai343e19 - 61214 178702.6 48389.564 152824.4 39120.372 -14.48 2.57
tai343e20 - 61332 176841 48324.924 151376 39696.151 -14.40 2.40

Stopping condition 60000× n 2000× n× 30

The number of constraints varies between 61002 and 61454. The same number
of objective function evaluations is used for the two algorithms. All the results
produced by our algorithm outperform the Ro-Ts in time and solution quality.
19 new results are proposed from Tai343e02 to Tai343e20. The time is reduced
thanks to the parallel evaluation of neighborhood used by the parallel ITSSD. It
allows our approach to save between 2.34 and 3.87 hours. Also for the solution
quality, we outperform the Ro-Ts for all the 20 instances with deviations between
-3.61% and -31.98%. The parallel ITSSD seems very promising to solve large
neighborhood instances.

6 Conclusion and perspectives

In this work, we have presented and experimented the parallel neighborhood
evaluation of the ITSSD approach to solve the QAP. Two kernels have been im-
plemented (the g compute delta and the g update delta). Both kernels evaluate
the neighborhood in parallel. New results for instances of size 343 are proposed.
A comparison with the well-known Ro-Ts shows the efficiency of our approach
in time and solution quality.

ITSSD approach demonstrates efficient results on the set of benchmark in-
stances of tai343eyy [14]. We evaluated our approach on 31 benchmark instances

333

from the QAPLIB and the algorithm gets the best average compared to several
variants of TS from the literature. We also evaluate our approach on 20 instances
from [14] and we provide 19 new results.

In future works, there are several possible ways to extend this work. One
possibility is to experiment other parameters to get better results on large neigh-
borhood instances. There are also instances which are not explored in literature
such as the tai729eyy. Another possibility is to explore another parallel design for
our approach, such as the level of parallel programs which can execute different
ITSSD in parallel with potential cooperation between ITSSD.

References

1. R. S. Bhaba, E. W. Wilbert, L. H. Gary, Locating sets of identical machines in a
linear layout, Ann. Oper. Res., vol. 77, pp. 183-207, Jan. 1998.

2. P. Kadluczka and K. Wala, Tabu search and genetic algorithms for the generalized
graph partitioning problem, Control Cybern., vol. 24, no. 4, pp. 459-476, 1995.

3. T. Koopmans, M. Beckmann, Assignment problems and the location of economic
activities, Econometrica, vol. 25, no. 1, pp. 53-76, 1957.

4. E. Taillard, Robust taboo search for the quadratic assignement problem, Parallel
computing 17, pp. 443-455 ,1991.

5. T. James, C. Rego, F. Glover, Multistart Tabu Search and Diversification Strategies
for the Quadratic Assignment Problem, IEEE TRANSACTIONS ON SYSTEMS,
Man, And Cybernetics-part a: systems and humans, vol. 39, no. 3, May 2009.

6. D.B. Kirk, W.M. Hwu, Programming Massively Parallel Processors - A Hands on
Approach, 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA, Morgan
kaufmann, 2010.

7. S. Tsutsui, N. Fujimoto, ACO with Tabu Search on a GPU for Solving QAPs using
Move-Cost Adjusted Thread Assignment, MEDAL Report No. 2011005, 2011.

8. T.V. Luong, N. Melab, E.G. Talbi, GPU Computing for Parallel Local Search Meta-
heuristic Algorithms. IEEE Transactions on Computers, vol. 62, pp. 173-185, 2013.

9. T.V. Luong, N. Melab, E.G. Talbi, Neighborhood Structures for GPU-based Local
Search Algorithms. Parallel Processing Letters, Vol. 20, pp. 307-324, 2010

10. M. Czapinski, An effective Parallel Multistart Tabu Search for Quadratic Assign-
ment Problem on CUDA platform, J. Parallel Distrib. Comput. 73, pp. 1461-1468,
2013.

11. J.S. Kapov, Tabu search applied to the quadratic assingnment problem, ORSA
Journal on Computing, 2(1) pp.33-45, 1990.

12. F. Glover, A template for scatter search and path relinking, in Lecture Notes in
Computer Science, vol. 1363, pp. 13-54, 1998.

13. R.E. Burkard, S.E Karisch, F. Rendl, QAPLIB - A quadratic assignment problem
library, journal of global optimization Volume: 10 Issue: 4, pp. 391-403, Jun 1997.

14. Z. Drezner, P. M. Hahn, E.D. Taillard, Recent Advances for the Quadratic As-
signment Problem With Special Emphasis on Instances that are Difficult for Meta-
Heuristic Methods, Annals of Operations research 139, pp 65-94, 2005.

15. Z. Drezner, P. M. Hahn, E.D. Taillard, Recent Advances for the Quadratic As-
signment Problem With Special Emphasis on Instances that are Difficult for Meta-
Heuristic Methods, Annals of Operations research 139, pp 65-94, 2005.

16. M. S. Hussin, T. Stützle, Hierarchical Iterated Local Search for the Quadratic
Assignment Problem, IRIDIA - Technical Report Series, 2009.

334

335

On Migration Policies in Dynamic Island Models

Jorge Maturana1, Frédéric Lardeux2, and Frédéric Saubion2

1 Universidad Austral de Chile
2 LERIA, University of Angers (France)

Abstract. Dynamic island models are population-based algorithm where
individuals are located on islands that executes a different algorithm. The
individuals are managed by a migration process that evolve during the
search according to the observed performance on the islands. We propose
a testing framework that assigns gains to the algorithms applied on the
island in order to assess the adaptive ability of the migration policies
with regards to various situations.

1 Introduction

Island models (IM) [WRH98,Sko07] have been introduced in evolutionary com-
putation in order to avoid premature convergence in population-based algorithms
when solving optimization problems. The main idea of IM is to use a set of sub-
populations instead of a panmictic one, in order to improve the performance
of the evolutionary process. Classically, islands models use the same algorithm
on each island and the islands differ only by their populations. In [LG10] it
has been proposed to consider different algorithms on the islands - restricted in
fact to a basic variation operator - and to define dynamic migration policies.
In this approach, called Dynamic Island Models (DIM), migration probabilities
change during the evolutionary process by means of a learning process. Com-
pared to classic island models, since only one operator is used on each island,
DIM is indeed related to adaptive operator selection techniques for evolutionary
algorithms [DFSS08]. DIM should be able to identify a subset of islands that
are currently appropriate for improving individuals, but also to quickly react to
changes when other operators become more beneficial [CGLS12]. DIM has been
compared to other adaptive operator selection policies [LG10,CGLS12].
The purpose of this paper is to carefully study different configuration of the DIM
with dynamic migration policies, as well as their ability to adapt to changes dur-
ing the solving process. Such changes occur when the solving process explores
different areas of the search space. Therefore, the basic search heuristics or op-
erators may become more or less efficient according to the current state of the
search. We propose here a testing model in order to simulate the evolution of the
search efficiency on the islands. In such (surrogate) models, gains are associated
to operators of the island in order to reflect their performances. Compared to
previous models, we consider a gain matrix that take into account possible inter-
actions between operators, i.e., the efficiency of an operator applied on a given
individual may depend on the previous operators applied on it. This is motivated

336

by the fact that, in search processes, such dependencies may occur between op-
erators alternating intensification and diversification stages or operators using
complementary neighbourhoods.
Our study highlights that DIM is efficient for tracking interactions between is-
lands and to quickly react to efficiency changes during the search. We introduce
a new configuration of the DIM, called Specialized Collaborative Model, using
simultaneously several settings of the dynamic migration process by means of
different types of individuals, which improves the performance.

2 Dynamic Island Model

A Dynamic Island Model (DIM) [LG10] is defined by:

– its size n
– a set of islands I = {i1, · · · , in} and a set of algorithms A = {a1, · · · , an}.

Each algorithm ak is assigned to island ik.
– a set of populations P = {p1, · · · , pn}. Each population is a subset of indi-

viduals. Each population pk is assigned to island ik. The size of the entire
population is fixed but the size of each pk changes continuously according to
the migrations. ak(pk) is the population obtained after applying algorithm
ak on population pk.

– a topology given by an undirected graph (I, V) where V ⊆ I × I is a set of
edges between islands (here we will consider a complete graph).

– an initial migration matrix M of size n × n with M(i, j) ∈ [0..1]. M is
supposed to be coherent with the topology, i.e., if (i, j) 6∈ V then M(i, j) = 0,
M is the set of migration matrices.

– a migration policy Π : I ×M → I that selects a migration island given an
initial island and a migration matrix.

Description of the components of the algorithm :

– In this paper, we define a notion of gain associated to each algorithm located
on the islands that simulates the effect of its application on the individuals
of the population. For instance, this gain can be the fitness improvement
with regards to a classic optimisation problem. Of course, this does not take
into account the fact that the performance of an algorithm a depends, most
of the time, on the semantics - phenotype and/or genotype - of the indi-
viduals. Nevertheless, such testing scenarios for EAs have been widely used
for studying control of operators [Thi05,DFSS08]. We consider a function
gain : A×N→ R, such that gain(a, t) is the gain of algorithm a when pro-
cessed at iteration t of the DIM. Individuals may be abstracted by the sum
of their successive gains. For an individual s ∈ pi at iteration t, we define
its value at iteration t v(s, t) = Σt

τ=1gain(as(τ), τ), where s(τ) is the island
where s was located at iteration τ .

– The value R(i, j) of reward matrix R evaluates the benefit (by means of
rewards) of sending individual from island i to island j. R is used to update
the migration matrix M by means of a reinforcement learning based process.

337

input : a DIM, a gain function
output: a solution s∗

local : a reward matrix R of size n× n
s∗ ← best(P);
R← 0;
while not stop condition do

for k ← 1 to n do
Update(R, pk);
pk ← ak(pk);
for s ∈ pk do

il ← Π(ik,M);
pl ← pl ∪ {s};
pk ← pk \ {s};

Learning(M,R);

b← best(P);
if b > s∗ then

s∗ ← b;

Algorithm 1: Dynamic Island Model

– The function best computes the best current individual of the whole popu-
lation, best(P) = best(∪i∈I(pi)), according to their values.

– The stop condition is, as usual, a limited number of iterations or the fact
that an optimal solution has been found in the global population.

Since M and R will be changed at each iteration of the algorithm, let us denote
M (t) and R(t) the value of these matrices at iteration t of the algorithm.

Reward function: Note that Reward(R, pi) is performed for each island i and

will affect the ith line vector Ri of R. R
(t)
i (k) corresponds to the reward assign to

individuals that were on island i at iteration t−1 and that have been processed on
island k at iteration t. We consider two possible reward functions for computing

R
(t)
i (k).

Elitist Reward: R
(t)
i (k) =

{
1
|B| if k ∈ B,
0 otherwise,

with

B = argmax
k∈{1,...,n}

({v(s, t)− v(s, t− 1)|s(t) = k, s(t− 1) = i})

B is the set of the indices of the islands k where individuals coming from i at
iteration t− 1 have obtained the best gain improvements at iteration t.

Proportional Reward: R
(t)
i (k) = Σs∈Kv(s,t)

|K| ,with K = {s ∈ p(t)k |s(t− 1) = i}
Note that K is the set of the individuals of the island k at iteration t that were
on island i at iteration t− 1.

Learning Function: The basic learning principle consists in sending more in-
dividuals to the islands that have previously improved individuals coming from

338

the current island and less to the islands that are currently less efficient. The
learning process is achieved by an adaptive update of the migration matrix at
iteration t, M (t), performed as:

M (t+1)(i, k) = (1− β)(α.M (t)(i, k) + (1− α)R
(t)
i (k)) + β.N (t)(k)

where N (t) is a stochastic noise vector. The parameter α represents the impor-
tance of the knowledge accumulated (inertia or exploitation) and β is the amount
of noise, which is necessary to explore alternative actions. The influence of these
parameters has been studied in [CGLS12].

Migration Policies: We consider two possible migration policies Π,

– Proportional migration: for each individual s on island i the classic migration
process consists in sending this individual according to a probability on line

vector M
(t)
i . Note that M is normalized in order to insure good probability

properties.
– Elitist migration policy: individuals from island i migrate to the island j that

has the highest value in line vector, i.e. argmaxjM
(t)(i, j). Such migration

policy promotes intensification of the search process toward the most efficient
islands.

Configurations of the DIM:

– CIM is a classic DIM that uses the elitist reward and proportional migration
as proposed in previous works [LG10,CGLS12].

– SCoM (Specialized Collaborative Model) is a new model using a propor-
tional reward for the update of the matrix. Compared to previous dynamic
migration methods, it allows to benefit from several possible migration poli-
cies in the same DIM. It uses two types of individuals: champions (C), that
migrate with an elitist migration and proportionals (P) that migrate with a
proportional rule. Preliminary experiments have been performed and show us
the need to exclude champions to contribute to update matrix M because an
excessive reinforcement of first-found migrations discourage the exploration
of other alternatives. We have also tested the combinations ”proportional
reward - proportional mutation” and ”elitist reward - champions and pro-
portionals”, which achieved very poor results and are thus not presented
here.

3 Assessing the Efficiency of Migration Policies

In this section, we are interested in two main aspects: introduce changes in the
efficiency of the islands and take into account dependencies between islands in
order to discover possible cooperative sequences
Given a DIM and a time horizon T , the efficiency of its migration policy is
defined by the value ΣT

t=1gain(ai(t), t) obtained by its best individual s∗ after T
iterations, where ai(t) is the algorithm that has been applied on this individual

339

on island i(t) at iteration t. In this context, an optimal policy corresponds to the
best sequence ai(1), · · · , ai(T) (that also corresponds to the best visiting sequence
of islands i(1), · · · , i(T)). In order to assess the ability to adapt the migration
policy to changes, we introduce a hidden gain matrix.

Definition 1 (Hidden Gain Matrix). Given a DIM we define a sequence
of matrices H(t), for each iteration t of the algorithm, of size |A|2 such that
gain(ak, t) = H(t)(j, k) if ai(t−1) = aj (i.e., gain from j to k).

In this model, the gain obtained by action ak depends on the action aj that has
been previously applied on the considered individual. This general model allows
us to take into account dependencies between search operators that should be
used sequentially. Of course, H is not known by the IM. Note that while H(t)

encodes gains, M (t) encodes migration probabilities. Nevertheless, the accuracy
of the learning process will be easy to assess by comparing the structures of
H and M . Note that, for an individual s, v(s, t) = Σt

k=2H
(k)(s(k − 1), s(k)).

When solving real problems, the gains associated to the application of the search
operators are likely to change over time. In order to simulate this behaviour in
our model, H will be a dynamic in our experiments, with changing values H(t).
As base line for comparisons, we consider the following policies:

– A myopic oracle (OR) which knows the hidden matrix and selects, at itera-
tion t+ 1, argmaxj H

(t+1)(i, j) if action ai was selected at iteration t.
– An optimal oracle (OPT) which selects the best sequence with a global view

(i.e., computes the best possible score).
– A uniform selection (U) that selects uniformly an action at each iteration.

4 Experiments

Three basic 10× 10 gain matrices A,B and C have been defined. These matrix
represent typical situations with different types of dependencies between islands.
Based on A,B and C, we will define either constant H such that H(t) is always
equal to one of these matrix or changing H. The gains are illustrated on Figure
1. The thickness of the arrows from i to j is proportional to the associated gain
H(t)(i, j). Of course, even if there is no line between some islands, migrations
are always possible but with a null gain in H(t), which means that no benefit
is obtained by using the operator j after the operator i (e.g., if operators have
opposite effects). Note that C has a gain cycle (2−10−9−8−7−5−2), however
it is suboptimal compared to the optimal cycle (2− 10− 7− 5− 2).

4.1 Results Using Constant Hidden Matrices

All the different policies presented above are tested on three constant hidden
matrix independently. For the DIM algorithms described in Section 2, we use 20
individuals, 30 runs of 600 iterations. The baseline policies described in Section
3 are tested on 20× 30 runs of 600 iterations.

340

B CA

1 2

3

4

5

67

8

9

10

1 2

3

4

5

67

8

9

10

1 2

3

4

5

67

8

9

10

1

0.3

0.7

0.7

0.3

0.5

0.5

0.5

0.8

0.3

0.80.4

0.4

0.4

Fig. 1. Representation of possible gains of H.

Parameters The parameters of these methods are given in Table ??. They
have been obtained using a methodological tuning approach based on F-Race
[BSPV02]. SCoM uses 3 Champions and 17 Proportionals, only the later con-
tributing to the update of M (learning process). Both CIM and SCoM use
α = 0.8, β = 0.01 as proposed in [CGLS12].

Results Table 1 shows the mean value of the total gain and its standard devi-
ation for the 30 runs. We also provide a measure of global performance, called
Performance Percentage (PP), defined as PP = 1/N

∑N
i gi/g

∗
i where N is the

number of iterations, gi is the gain obtained by the best individual in the pop-
ulation at iteration i and g∗i is the optimal mean gain for the current hidden
matrix H at iteration i. This criterion is adapted to other selection policies that
do not use populations by considering the best score among 30 runs at each
iteration. CIM and SCoM get significantly better results than the other ones,
according to a T-test at 95% confidence, which constitutes a good preliminary
result before exploring their behaviour when H changes over time.

Method
H = A H = B H = C

Mean SD PP Mean SD PP Mean SD PP

OPT 340.00 – 1.00 300.00 – 1.00 315.00 – 1.00
OR 155.23 4.37 0.46 137.57 3.48 0.45 239.90 0.00 0.76
U 24.83 1.85 0.07 22.98 2.35 0.08 21.27 1.41 0.07
CIM 113.78 4.80 0.33 103.64 5.04 0.35 215.73 3.62 0.68
SCoM 150.60 4.03 0.47 131.76 3.24 0.41 237.18 1.52 0.75

Table 1. Results obtained by different methods when solving a constant H

4.2 Results Using Changing Hidden Matrices

We study how the different policies react to changes of the hidden matrix. We
simply change H(t) using sequentially A-B-C every 100 iterations, and compare
the performances of the policies.
OR is very efficient on C, that has a clearly well defined path, but it get lost on
A and B (no clear path to follow). The result is certainly due to the fact that

341

Meth. Parameters Mean SD PP

OPT – 318.33 – 1.00
OR – 178.16 2.92 0.56
SCoM C3P17-P 136.68 18.78 0.43
CIM α = 0.8, β = 0.01 127.88 4.52 0.40

Table 2. Results obtained when changing H during the run for initial comparisons.

OR, by definition, checks only one step forward. CIM obtains similar results as
in the fixed matrix case (see Table 1). This also seems coherent since, if elitist
reward and proportional migration are applied on a clear path, then it is likely
that the DIM will be able to identify it.
Besides OR, SCoM obtains the best results for the initial comparison (according
to a T-test at 95% confidence). Nevertheless, it is interesting to note that, while
SCoM obtains good results the first time it solves B, it is different for the second
time. Looking at the population, remark that since champions do not perform
exploration, the proportional individuals will not be able to efficiently update the
migration matrix M . There is thus a need for increasing the exploration ability
of SCoM, as proposed in the next subsection. Let us also note that SCoM and
CIM are both faster than baseline methods with a factor 4 and 8, respectively.

4.3 Improving the SCoM Policy

As mentioned before, a solution for improving policies consists in increasing
their exploration ability (i.e., well known exploration vs. exploitation dilemma
in reinforcement learning). Since SCoM obtains the best results, we focus now
on this DIM. Remind that SCoM uses two types of individuals (champions and
proportionals). A third type could now be considered, called Explorer (E), that
chooses uniformly the next island to migrate on.
We define different configurations of SCoM , mainly by changing the composi-
tion of the population (C, P and E individuals) and selecting whether all or just
one type of individual will be used to update M . Table 3 shows the results of a
selected number of combinations of SCoM . The names correspond to the config-
urations, for instance, P17E3-E corresponds to a population of 17 proportionals
and 3 explorers, when only the latter contribute to update M . By looking at
the results on Table 3, the following conclusions may be drawn:

– Champions often produce better results than Proportionals especially in
static conditions, but they are unable to escape from a well-defined migration
path even if its efficiency decreases, due to a change in H.

– Even though Proportionals obtain slightly less gain than Champions, the fact
that they use a proportional migration provides them with an opportunity
to escape from local optima when gains decrease (acting as “open-minded
champions”).

– Explorers never obtain good results, but they are a key feature in order to
obtain a comprehensive and efficiently updated M .

342

Meth. Parameters Mean SD PP

SCoM C10P10-P 156.17 4.47 0.50
SCoM C10E10-E 173.98 13.74 0.55
SCoM C17E3-E 143.81 24.97 0.46
SCoM P10E10-All 189.92 7.08 0.61
SCoM P10E10-E 126.56 10.76 0.40
SCoM P17E3-E 79.36 9.10 0.25
SCoM P3E17-E 152.50 7.52 0.48
SCoM P17E3-All 161.83 17.48 0.52

Table 3. Results obtained when changing H during the run.

Remark that a combination of Proportionals and Explorers outperforms other
policies that include Champions. It seems that the gain obtained by Proportion-
als are good enough to prescind from Champions. The prominence of policies
where all individuals contribute to M (-All) supports the idea of using Propor-
tionals either to gather high gains and to explore the search space.

References

[BSPV02] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A
racing algorithm for configuring metaheuristics. In GECCO ’02: Proceedings
of the Genetic and Evolutionary Computation Conference, pages 11–18, San
Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[CGLS12] C. Candan, A. Goëffon, F. Lardeux, and F. Saubion. A dynamic island
model for adaptive operator selection. In Genetic and Evolutionary Compu-
tation Conference (GECCO’12), pages 1253–1260, 2012.

[DFSS08] Luis Da Costa, Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. Adap-
tive operator selection with dynamic multi-armed bandits. In M. Keijzer et
al., editor, Proc. GECCO’08, pages 913–920. ACM Press, 2008.

[LG10] Frédéric Lardeux and Adrien Goëffon. A dynamic island-based genetic al-
gorithms framework. In SEAL, pages 156–165, 2010.

[Sko07] Zbigniew Skolicki. An Analysis of Island Models in Evolutionary Computa-
tion. PhD thesis, George Mason University, 2007.

[Thi05] D. Thierens. An adaptive pursuit strategy for allocating operator probabili-
ties. In Genetic and Evolutionary Computation Conference, GECCO, pages
1539–1546. ACM, 2005.

[WRH98] D. Whitley, S. Rana, and R. Heckendorn. The island model genetic algo-
rithm: On separability, population size and convergence. Journal of Com-
puting and Information Technology, 7:33–47, 1998.

343

Index of authors

Abdelkafi, Omar, 277, 327
Aguirre, Hernan, 21, 36
Armas, Rolando, 36

B. Pereira, Francisco, 150
Belkhir, Nacim, 122
Ben Jaafar, Ines, 223
Berthier, Vincent, 80, 253, 286, 295
Borges, Henrique E., 178
Brevillier, Mathieu, 277, 327
Burke, Edmund, 6

Chabin, Thomas, 51
Christophe, Jean-Joseph, 238
Costa, Ernesto, 150
Couetoux, Adrien, 295

Debbat, Fatima, 208
Decock, Jeremie, 238, 268
Derbel, Bilel, 93
Dos Santos, Marcus, 178
Dreo, Johann, 122

Ffrancon, Robyn, 163
Fonlupt, Cyril, 93, 137

Galvao, Diana F., 193
Gaucher, Pierre, 208
Ghedira, Khaled, 223
Goeffon, adrien, 108
Gomes, Rogerio M., 178

Hao, Jin-Kao, 223

Idoumghar, Lhassane, 277, 327

Jankee, Christopher, 93

Krauledat, Matthias, 309

Lardeux, Frederic, 108, 336
Lehman, Joel, 193
Lepagnot, Julien, 277, 327

Liefooghe, Arnaud, 21
Liu, Jialin, 238
Lourenco, Nuno, 150
Lupien St-Pierre, David, 268
Lutton, Evelyne, 51

Maturana, Jorge, 336
Monmarché, Nicolas, 208

Ochoa, Gabriela, 6, 108

Robillard, Denis, 137

Saubion, Frederic, 108, 336
Saveant, Pierre, 122
Schoenauer, Marc, 122, 163
Sghir, Ines, 223
Siarry, Patrick, 178
Slimane, Mohamed, 208
Soria-Alcaraz, Jorge Alberto, 108
Souza, Denise, 178
Struck, Alexander, 309

Tanaka, Kiyoshi, 21, 36
Teytaud, Olivier, 66, 238, 253, 268, 295
Tonda, Alberto, 51

Urbano, Paulo, 193

Veenstra, Frank, 309
Veerapen, Nadarajen, 6
Verel, Sebastien, 21, 93

Wang, Yifei, 318
Whitley, Darrell, 6

Zapotecas Martinez, Saul, 21, 36

344

	Foreword
	Program Committee
	Steering Committee
	Organizing Committee
	Papers
	The Multi-Funnel Structure of TSP Fitness Landscapes: A Visual Exploration, Gabriela Ochoa, Nadarajen Veerapen, Darrell Whitley and Edmund Burke
	Approaches for Many-objective Optimization: Analysis and Comparison on MNK-landscapes, Hernan Aguirre, Saul Zapotecas Martinez, Arnaud Liefooghe, Sebastien Verel and Kiyoshi Tanaka
	Traffic Signal Optimization: Minimizing Travel Time and Fuel Consumption, Rolando Armas, Hernan Aguirre, Saul Zapotecas and Kiyoshi Tanaka
	Global Sensitivity Analysis and Evolutionary Algorithms, Thomas Chabin, Alberto Tonda and Evelyne Lutton
	Quasi-random numbers improve the CMA-ES on the BBOB testbed, Olivier Teytaud
	Progressive Differential Evolution on Clustering Real World Problems, Vincent Berthier
	Distributed Adaptive Metaheuristic Selection: Comparisons of Selection Strategies, Christopher Jankee, Verel Sebastien, Bilel Derbel and Cyril Fonlupt
	Combining Mutation and Recombination to Improve a Distributed Model of Adaptive Operator Selection, Jorge Alberto Soria-Alcaraz, Gabriela Ochoa, Adrien Goeffon, Frederic Lardeux and Frederic Saubion
	Parameter Setting for Distributed CMA-ES, Nacim Belkhir, Johann Dreo, Pierre Saveant and Marc Schoenauer
	Towards Human-Competitive Game Playing for Complex Board Games with Genetic Programming, Denis Robilliard and Cyril Fonlupt
	SGE: A Structured Representation for Grammatical Evolution, Nuno Lourenco, Francisco B. Pereira and Ernesto Costa
	Greedy Semantic Local Search for Small Solutions, Robyn Ffrancon and Marc Schoenauer
	Effects of Cooperation in a Bioinspired Multi-agent Autonomous System for Solving Optimization Problems, Marcus Dos Santos, Denise Souza, Henrique E. Borges, Rogerio M. Gomes and Patrick Siarry
	Novelty-driven Particle Swarm Optimization, Diana F. Galvao, Joel Lehman and Paulo Urbano
	How a model based on P-temporal Petri Nets can be used to study Aggregation Behavior, Fatima Debbat, Nicolas Monmarche, Pierre Gaucher, Mohamed Slimane
	A Distributed Hybrid Algorithm for the Graph Coloring Problem, Ines Sghir, Jin-Kao Hao, Ines Ben Jaafar and Khaled Ghedira
	Variance Reduction in Population-Based Optimization: Application to Unit Commitment, Jean-Joseph Christophe, Jeremie Decock, Jialin Liu and Olivier Teytaud
	On the codimension of the set of optima: large scale optimisation with few relevant variables, Vincent Berthier and Olivier Teytaud

	Posters
	Evolutionary Cutting Planes, David Lupien St-Pierre, Olivier Teytaud and Jeremie Decock
	Idol-Guided Backtracking Search Optimization Algorithm, Mathieu Brevilliers, Omar Abdelkafi, Julien Lepagnot and Lhassane Idoumghar
	Comparing optimizers on a unit commitment problem, Vincent Berthier
	Combining policies: the best of human expertise and neurocontrol, Vincent Berthier, Adrien Couetoux and Olivier Teytaud
	Acquiring Efficient Locomotion in a Simulated Quadruped through Evolving Random and Predefined Neural Networks, Frank Veenstra, Alexander Struck and Matthias Krauledat
	Contourlet-Based Multispectral Image Fusion Using Free Search Differential Evolution, Yifei Wang
	A GPU-based parallel neighborhood evaluation for ITSSD, Omar Abdelkafi, Lhassane Idoumghar, Julien Lepagnot and Mathieu Brevilliers
	On Migration Policies in Dynamic Island Models, Frederic Lardeux, Jorge Maturana and Frederic Saubion

	Index of authors

