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Foreword

This proceedings includes the papers presented at the 12th Biennial International Conference on Artificial Evolution,
EAE| 2015, held in Lyon (France). Previous EA editions took place in Bordeaux (2013), Angers (2011), Strasbourg
(2009), Tours (2007), Lille (2005), Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes (1997), Brest
(1995), and Toulouse (1994).

Authors had been invited to present original work relevant to Artificial Evolution, including, but not limited
to: Evolutionary Computation, Evolutionary Optimization, Co-evolution, Artificial Life, Population Dynamics,
Theory, Algorithmics and Modeling, Implementations, Application of Evolutionary Paradigms to the Real World
(industry, biosciences, ...), other Biologically-Inspired Paradigms (Swarm, Artificial Ants, Artificial Immune Sys-
tems, Cultural Algorithms...), Memetic Algorithms, Multi-Objective Optimization, Constraint Handling, Parallel
Algorithms, Dynamic Optimization, Machine Learning and hybridization with other soft computing techniques.

Each submitted paper has been reviewed by three members of the International Program Committee. Among
the 34 submissions received, 18 papers have been selected for oral presentation and 8 other papers for poster
presentation. As for the previous editions (see LNCS volumes 1063, 1363, 1829, 2310, 2936, 3871, 4926, 5975, 7401
and 8752), a selection of the best papers presented at the conference and further revised will be published as a
volume of Springer’s LNCS series.

We would like to express our sincere gratitude to our invited speakers: Darrell Whitley and Guillaume Beslon.

The success of the conference resulted from the input of many people to whom I would like to express my
appreciation: The members of Program Committee and the secondary reviewers for their careful reviews that
ensure the quality of the selected papers and of the conference. The members of the Organizing Committee
for their efficient work and dedication assisted by Stéphane Bonnevay, Véronique Deslandres and Eric Duchene.
The members of the Steering Committee for their valuable assistance. Aurélien Dumez for his support on the
administration of the website.

I take this opportunity to thank the different partners whose financial and material support contributed to the
organization of the conference: Polytech’Lyon, University Lyon 1, ERIC, LIRIS and CNRS.

Last but not least, I thank all the authors who have submitted their research papers to the conference, and the
authors of accepted papers who attend the conference to present their work. Thank you all.

Stéphane Bonnevay
EA 2015 Chair

University of Lyon 1,
ERIC Laboratory, France

1 As for previous editions of the conference, the EA acronym is based on the original French name “Evolution Artificielle”.
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The Multi-Funnel Structure of TSP Fitness
Landscapes: A Visual Exploration

Gabriela Ochoa!, Nadarajen Veerapen®,
Darrell Whitley?, and Edmund K. Burke!

! Computing Science and Mathematics, University of Stirling, Scotland, UK.
2 Department of Computer Science, Colorado State University, USA.

Abstract. We use the Local Optima Network model to study the struc-
ture of symmetric TSP fitness landscapes. The ‘big-valley’ hypothesis
holds that for TSP and other combinatorial problems, local optima are
not randomly distributed, instead they tend to be clustered around the
global optimum. However, a recent study has observed that, for solutions
close in evaluation to the global optimum, this structure breaks down
into multiple valleys, forming what has been called ‘multiple funnels’.
The multiple funnel concept implies that local optima are organised into
clusters, so that a particular local optimum largely belongs to a partic-
ular funnel. Our study is the first to extract and visualise local optima
networks for TSP and is based on a sampling methodology relying on the
Chained Lin-Kernighan algorithm. We confirm the existence of multiple
funnels on two selected TSP instances, finding additional funnels in a
previously studied instance. Our results suggests that transitions among
funnels are possible using operators such as ‘double-bridge’. However, for
consistently escaping sub-optimal funnels, more robust escaping mecha-
nisms are required.

1 Introduction

The structure of combinatorial fitness landscapes is known to impact the per-
formance of heuristic search algorithms. Features such as the number and distri-
bution of local optima and their basins of attraction are among the most stud-
ied. The relationship among local optima for the symmetric Traveling Salesman
Problem (TSP) under the standard 2-change neighbourhood was first analysed
in [4], where a globally convex structure was discovered. The global optimum was
found to be ‘central’ to all other local optima conforming a ‘big-valley’ struc-
ture. This is interpreted as a landscape where many local optima exists, but
they are easy to escape and the gradient, when viewed at a coarse level, leads to
the global optimum (Fig. 1). However, a more recent study has found that the
big valley structure breaks down when considering solutions near in evaluation
to the global optimum [7]. The big-valley separates into multiple valleys, con-
forming what has been called ‘multiple funnels’ in the study of energy surfaces
in chemical-physics [19]. The multi-funnel concept implies that local optima are
organised into clusters, so that a particular local optimum largely belongs to a
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Fig. 1: Depiction of the ‘big-valley’ structure.

particular funnel. The appearance of multiple funnels explains why certain it-
erated local search heuristics can quickly find high-quality solutions, but fail to
consistently find the global optimum. In a series of studies, Whitley et al. [20, 7,
21] have proposed a crossover operator (Partition Crossover), which has demon-
strated the ability to escape funnels at evaluations close to the global optimum.
A similar recombination operator [12] is used by Helsgaun [8] in the so called
LKH-solver.

This article uses the Local Optima Network (LON) model [15, 16, 14,18] in
order to explore in more detail the structure of TSP landscapes near the global
optimum. Local optima networks compress the whole search spaces into a graph
having as vertices the local optima, and as edges transitions among them accord-
ing to a given search operator. This network-based model brings the tools from
the new science of networks [13] (e.g., metrics and visualisation) to the study of
fitness landscapes in combinatorial optimisation.

Our study considers Chained Lin-Kernighan (Chained-LK), one of the best
performing heuristic algorithms for TSP [11,2]. Chained LK is an iterated local
search approach combining the variable depth local search of Lin and Kernighan
(LK-search) [10] with the double-bridge move [11] (a form of 4-change, depicted
in Fig. 2b) as the perturbation or ‘kick’ operator. Therefore, the proposed LON
model considers local minima according to LK-search, and transitions among
them according to the double-bridge move. Our goal is to gain a deeper under-
standing of the multi-funnel structure of the TSP under Chained-LK, which will
help in selecting and designing stronger escape mechanisms (such as Partition
Crossover [20,21]) to avoid being trapped in a sub-optimal funnel. The main
contributions of this article are the following:

1. First study of local optima networks for TSP, including their sampling and
analysis.

2. Definition of the DLON model (distance local optima networks) and adap-
tation of the escape edges model (ELON) to TSP.

3. Network visualisation of the multi-funnel structure of TSP fitness landscapes.
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Fig. 2: Illustration of tours obtained after 2-change or double-bridge move.

2 Local Optima Networks for TSP

For a TSP instance with n cities, the search space is the set of permutations of
the n cities. The number of tours, which equals the number of permutations, is
factorial in n. The fitness function f is given by the length of the tour, which is
to be minimised. Before presenting formal definitions in Section 2.1, we briefly
describe the following notions relevant to our model.

LK-search: The well-known Lin-Kernighan heuristic is a powerful local
search algorithm. It is based on the idea of k-change moves: take the current
tour and remove k different links from it, which are then reconnected in a new
way to achieve a legal tour. A tour is considered to be ‘k-opt’ if no k-change exists
which decreases its length. Fig. 2a illustrates a 2-change move. LK applies 2, 3
and higher-order k-changes. The order of a change is not predetermined, rather
k is increased until a stopping criterion is met. Thus many kinds of k-changes
and all 3-changes are included. There are many ways to choose the stopping
criteria and the best implementations are rather involved. We use here the im-
plementation available in the Concorde software package [1], which uses do not
look bits and candidate lists.

Double-bridge move: Proposed by Martin et al. [11] as the ‘kick’ mecha-
nism in the Chained-LK heuristic, the double-bridge move (drawn in Fig. 2b)
is a type of 4-change. It consists of two improper 2-changes, each of which is a
‘bridge’ (i.e, it takes a legal, connected tour into two disconnected parts). The
combination of both bridges, must then be chosen as to produce a legal final
tour.

Bond distance: Measures the difference between two tours t; and ¢y ac-
cording to the number of edges or ‘bonds’ that differ in both tours. Specifically,
b(t1,t2) is equal to n minus the number of edges that are present in both ¢; and
to disregarding edge direction [4].

Our approach requires defining and extracting local optima networks for TSP
instances. To construct the networks, we need to define their nodes and edges.
Nodes will be local optima according to LK-search, and two types of weighted
edges are considered: escape edges and distance edges. The escape edges are



based on the number of double-bridge moves required to escape from a local
optimum, while distance edges consider the bond distance between solutions.

Since combinatorial explosion renders the full enumeration of local optima for
TSP instances of non-trivial size impossible, we resort to sampling local optima
which are close in evaluation to the global optimum. The sampling procedure is
further described in Section 2.2.

2.1 Definitions

Definition 1. A funnel floor solution is a high quality local optimum that is
conjectured to be at the bottom of a funnel. Indeed, they were called funnel
bottom solutions in [7], and are generated running Chained-LK for a large enough
number of iterations. The set of funnel floor solutions is denoted by F'.

Definition 2. A funnel basin solution is a local optimum within a funnel. Each
funnel basin solution is obtained by first locating a funnel floor, and then escaping
from the funnel floor in order to discover a nearby local optimum. In this article,
this is done using a random walk with double-bridge followed by improvement
using LK-search. The set of local optima defining the funnel basins is denoted
by B. Specifically, for some x € F, y € B, C B if it can be obtained from x
after a sequence of length d of double-bridge moves followed by LK-search. Since
after a double-bridge followed by LK-search the local optimum obtained y can
be equal to the starting point x, the length d of the random walk is incremented
until y # x.

The set of local optima, L, is the union of the funnel floors and local optima
that define the funnel basins, L = F'U B.

Definition 3. An escape edge is a weighted edge from a funnel floor to a local
optimum. Specifically, there is an edge e, , of weight d between the funnel floor
point z € F and the local optima y € B if y can be obtained from z after a
sequence of length d of double-bridge moves followed by LK-search. No self-loops
are considered. The set of escape edges is denoted by E.ge.

Definition 4. A distance edge is a weighted edge, according to the bond dis-
tance, between any two local optima. Specifically, there is an edge e, , of weight
d between local optima x and y € L if the bond distance b(x,y) = d. The set of
distance edges between any two local optima in L is denoted by Fg;s:.

Definition 5. The FEscape Local Optima Network (ELON) is the graph
ELON = (L,E.s.) where nodes are the local optima L, and edges E.s. are
the escape edges.

Definition 6. The Distance Local Optima Network (DLON) is the graph
DLON = (L, Eg;st) where nodes are the local optima L, and edges Eg;s: are the
distance edges.



Data: I, a TSP instance
Result: F', the set of tours on the funnel floors
B, the set containing the escape tours from sampled funnel floors

F + 0;
for i < 1 to 10,000 do

x < chainedLK(I, stallcount = 10, 000);

if x ¢ F then

| F+« FU{z};

end
end
S < mostFrequentSolutionForEachFitnessLevel(F');
B + 0;
for vop € S do
By, « 0;
for j < 1 to 1,000 do
1 0;
repeat

i1+ 1

v; + randomDoubleBridgeMove(v;_1);

v« LK(v;);
until v’ # vo;
BUO <~ Bvo U {U/}5
end
B + B U By;
end

Algorithm 1: TSP local optima network sampling procedure

2.2 Sampling Methodology

We apply a sampling strategy similar to that used by Hains et al. [7] where
two stages are considered. This process also resembles the one used by Iclan-
zan et al. [9] to sample the landscape of Quadratic Assignment Problem in-
stances. In the first stage, local optima of very good quality are identified which
define the funnel floors (set F' defined in Section 2.1). In the second stage, ran-
dom walks are generated to escape these local optima in order to determine the
funnels’ basins (set B defined in Section 2.1). These approaches are detailed
below and through pseudocode in Algorithm 1.

The funnel floor solutions are tours obtained when Chained-LK stalls. In
practice, we determine stalling to occur when fitness does not improve for 10,000
consecutive iterations of Chained-LK. This procedure is itself repeated 10,000
times from a randomly generated initial tour and the unique tours produced are
saved in F', the set of funnel floor solutions. This procedure corresponds to the
first loop in Algorithm 1.

To determine a funnel’s basin, we identify a start point in its floor, let us call
it vg, and follow a random walk using a sequence of double bridge perturbations.
More precisely, at each step i of the random walk, a random move is performed
on v;_1, producing a tour v;. An LK-search is then applied to v; to produce a
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locally optimal tour v’. If v is different from vg, then we have escaped from the
basin of attraction of vg. The random walk is stopped and its length ¢ is the
escape distance. Tour v’ is saved in B,,, the set of tours having escaped from
vg. This escape procedure is repeated 1,000 times.

When there are many tours on the funnel floors, it is impractical to try to
escape from all of them. When Hains et al. [7] computed the funnels floors from
1,000 Chained-LK applications, they found that tours with the same fitness level
formed a connected component under 2-change. These could thus be considered
to form a plateau and they, therefore, randomly chose one tour to escape from
out of each plateau.

In our case, having performed 10,000 Chained-LK applications, we find many
more tours on the funnel floors and, furthermore, they are not all on 2-change
plateaus. Our approach selects the most frequently occurring solution within
each fitness level as a starting solution. Ties are broken at random.

3 Results

Our study considers two ‘milestone’ TSP instances: lin818 and att532 (as named
in TSPLIB [17], also listed in Table 1.5 from [3]). They are composed of 318 and
532 cities, and were first solved to optimality in 1980 and 1987, respectively. The
1in318 instance is a circuit board drilling example (i.e., it models the routing
of a numerically controlled drilling machine efficiently through a set of hole
positions), and was presented by Lin and Kernighan in their seminal paper
[10]. It remained the largest TSP instance solved to optimality for a span of
seven years in the 1980s. The att532 instance is comprised of pseudo-Euclidean
coordinates that go through the 532 largest cities of the USA. It is very well
known given the difficulty that the distances to the next node are very short at
the east coast, whereas in other regions of the USA they are very long.

Results are discussed in the following two subsections. Section 3.1 analy-
ses the sampled local optima and the bond and escape distances among them.
Section 3.2 visualises the escape and distance local optima networks.

3.1 Local Optima and Distances

For instance 1in318, 4 unique funnel floor solutions were identified, each with
a different fitness level (Table 1). The global optimum was found in the over-
whelming majority, 96 %, of cases. The other funnel floor solutions’ fitness is
within 0.32 % of the global optimum.

When considering att532, 47 unique funnel floor solutions were identified,
distributed among 8 different fitness levels (Table 2). This is in contrast to the
20 unique solutions and 4 different fitness levels found by Hains et al. [7]. A
closer look at the data reveals that these 4 fitness levels amount to the most
frequent fitness levels in our data, comprising 99 % of the solutions found. The
seldom found solutions are therefore a result of carrying out a greater number
of Chained-LK searches to sample solutions close to the global optimum.
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Table 1: 1in318 summary data

All Sols Fitness Levels
42029 42143 42155 42163

Unique Solutions 4 1 1 1 1
Fitness Level Freq. (%) 96.02 3.59 0.09 0.30
Colour of funnel in figures [ | [ |
Symbol in Fig. 4a O A + X

Table 2: atth32 summary data

All Sols Fitness Levels
27686 27693 27703 27704 27705 27706 27708 27715

Unique Solutions 47 2 1 8 8 13 8 5 2
Fitness Level Freq. (%) 41.78 0.04 33.17 0.65 20.69 3.58 0.07 0.02
Start Point Freq. (%) 21.35 0.04 5.80 0.16 4.64 0.57 0.03 0.01
Colour of funnel in figures [ | [ | [ | [ |

Symbol in Fig. 4b ) A + X < Vv X *

The two globally optimal solutions account for only 42 % of all funnel floor
solutions found but all the fitnesses are within 0.10 % of the global optimum. As
previously mentioned, for att532, the starting points we try to escape from are
the most frequent funnel floor solution within each fitness level. These make up
33 % of the solutions found.

The pairwise bond distances between the starting points for both instances
are given in Fig. 3. In most cases, the pairwise distance between any two solutions
is non-trivial. For example, the bond distance between the first two best solutions
for 1in318 is 37.

For attb32, the smallest bond distance between start points is only 16. This
seems to be a bridgeable distance with a small number of double-bridge moves.
The starting point with fitness 27,693 only represents 0.04 % of funnel floor solu-
tions. It is at distance 16 from the start point with fitness 27,686 that constitutes
21 % of solutions found. These numbers suggest that there is a reasonable way
to move between these funnels, which explains why so few solutions with fitness
27,693 are found. This is corroborated by the local optima networks visualised
in Section 3.2.

To analyse the fitness distribution of local optima within funnels, let us con-
sider Figure 4. Dot plots of fitness versus bond distance to the global optimum
are presented for both instances. In addition, kernel density estimation distribu-
tions of points are provided.

Here our results match those of Hains et al. [7]. Firstly, local optima within
a funnel are correlated in fitness and distance to their own respective starting

12



(a) lin318 — 4 start points (b) atth532 — 8 start points

Fig. 3: Pairwise distances between funnel floor solutions for instances lin318 and
att532. Fitness levels are indicated on the left of each plot. In (a), instance lin318
has a single solution per fitness level. In (b), the most frequent solution is selected
for each fitness level of att532.

point. Secondly, there is little correlation between fitness of local optima near
the global optimum and their distance to it. However, for attb32, the great
majority of the local optima observed by Hains et al. when using double-bridge
were below the 27,750 fitness level and a plot similar to ours was only obtained
when using 2-change instead of double-bridge. They therefore concluded that
double-bridge exacerbates the multi-funnel structure. We found instead that,
when comparing the two escape operators, it is 2-change that exacerbates the
multi-funnel structure. In other words, it is harder to escape funnels using 2-
change as compared to double-bridge.

Figure 5 gives the escape and pairwise bond distance distributions for both
instances. With a mean and mode of 1 for the escape distance, we can see that
the double-bridge move is highly effective in escaping from the starting points.

For bond distances, the distribution for all edges differs from the distribution
considering only edges between a start point and the solutions it escaped to. For
lin318, when considering all start points, the distribution roughly resembles a
step function with 2 steps which then quickly tapers off. The same distribution
can be observed when considering each start point separately (not shown here).
For att532, the bond distance distributions when considering a single start point
to the local optima within the funnel appear to be bimodal (not shown here) or
similar to the distribution when considering all start points. We intend to look
more closely at distributions within individual funnels in future work.

13
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Fig. 4: Dot plots and corresponding density distribution plots of the local optima
generated when escaping from funnel floors. Bond distance is computed w.r.t. to
the global optimum, or the most frequent of the two global optima in the case
of attb32. The range of fitness values displayed is chosen to encompass at least
95 % of points. Start points are indicated by a black symbol.

3.2 Local Optima Networks

The two local optima networks models, using escape and bond distance edges,
were extracted and visualised for the two selected TSP instances. Both models
clearly suggest a multi-cluster (multi-funnel) structure (see Figure 6 explained
below). The escape edges give a network view of the search process by Chained-
LK, while the bond distance model is more general and illustrates the distribu-
tions of local optima which are close in distance.

At the heart of network visualisation is the graph layout. We use here the
Fruchterman and Reingold’s method [6] provided by the igraph package [5] for the
R statistical language. The method is based on exploiting analogies between the
relational structure in graphs and the forces among elements in physical systems.
Specifically, considering attractive and repulsive forces by associating vertices
with balls and edges with springs. The heuristic is concerned with drawing graphs
according to some generally accepted aesthetic criteria such as a) distribute the
vertices evenly in the frame, b) minimise edge crossings, ¢) make edge lengths
uniform, and d) reflect inherent symmetry [6].

Figure 6 visualises the two network models (escape and distance edges) on
the two studied instances. In order the make the picture manageable in size,
sub-graphs of the whole sampled networks were selected for visualisation. The
sub-graphs include all the funnel floor solutions (drawn as squares), and all the
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Fig. 5: Escape and bond distance distributions. The most frequent escape dis-
tance is 1. The maximum escape distance is 4 on att532, but occurred only once.

solutions that we call frontier nodes (drawn in black). These frontier nodes are
those that can be attained from more than one funnel start point by the escaping
mechanisms (i.e., a sequence of double bridge moves followed by LK-Search). The
colour of the remaining nodes indicates the funnel (fitness level) membership (as
indicated in Tables 1 and 2 for 1in318 and att532, respectively) with the red
colour identifying the funnel of the global optimum. For the lin318 instance,
10 % of the funnel basin points were selected for visualisation. This percentage
was 5% for the larger att532 instance. All the escape edges are visualised, with
darker grey indicating edges with escape distance 1. Visualising all bond distance
edges is not feasible, so we set a threshold of 1/10 of the maximum distance to
the global optimum in the sampled points (i.e., there is an edge if the distance
between nodes is below the given threshold). This threshold was a distance of 9
for 1in318 and 14 att532. Again the darker grey identifies edges with the minimum
distance.

The multi-funnel structure can be visualised in the network plots in Fig-
ure 6, which separate in clearly defined clusters of solutions. The 1in318 instance
features 4 clusters, while att532 has 8 clusters. The clusters are more clearly de-
fined for the escape edges, but interestingly, the same overall structure appears
for the distance edges. It is interesting to observe that some points (drawn in
black) ‘belong’ to more than one funnel. That is, they can be reached from more
than one funnel floor by double-bridge moves followed by LK-search. Therefore,
it is possible for Chained-LK to escape some funnels, but it seems difficult for it
to consistently escape from all funnels.
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(c) att532 — Escape Edges (d) att532 — Distance Edges

Fig. 6: Visualisation of Local Optima Networks for 1in318 (top) and att532 (bot-
tom). Both networks models, using escape and distance edges, are visualised.
Nodes are local optima and edges represent escape or distance edges (with a
set threshold), respectively. Square nodes represent solutions that belong to the
funnel floors, while circle nodes to funnel basins. The larger square nodes (in red)
are the global optima. Colours identify the different funnels (or fitness levels)
as indicated in Tables 1 and 2. The black nodes are ‘frontier’ points, i.e., points
that can be reached from more than one funnel.
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An interpretation of the effectiveness of Chained-LK may be obtained when
considering the local optima networks together with the fitness levels of the start
points of each funnel, their frequency when sampling the funnel floors and the
pairwise bond distance between start points.

For 1in318, the two connected funnels are the ones whose start points have
fitness 42,143 and 42,155 and were sampled 3.59 % and 0.09 % of the time re-
spectively. They are also the two closest start points for 1in318, with a distance
of 26. For att532, as was observed in Section 3.1, start points with fitness 27,686
and 27,693 are at a distance of 16 and constitute 21.35 % and 0.04 % of sampled
funnel floors. They are at a bond distance of 16 to each other and their corre-
sponding funnels are linked in the local optima networks. The start point with
fitness 27,703 (5.80 %) is connected to the start point with fitness 27,704 (0.16 %
and distance 18). While these three observations are not sufficient to draw broad
conclusions, an initial interpretation is that ‘close enough’ start points exhibit
funnels that are linked to each other. Furthermore, when two funnels are con-
nected, it is highly probable that the search will end up in the funnel with the
funnel floor with better fitness.

The start point with fitness 27,703 is also connected to the one with fitness
27,706 (0.57 % and distance 33), but through two other floor solutions (indicated
by black squares in the figure) that were not used as start points. These two floor
solutions are also of fitness 27,703 and 27,706 and are only at a bond distance
of two from the start point with the same fitness.

4 Conclusions

We have implemented a sampling procedure to extract local optima networks
for TSP instances. In particular, we studied the search space structure close
to the global optimum and confirmed the existence of multiple funnels. Our
study is the first to analyse local optima networks for TSP and provide a clear
visualisation of its multi-funnel structure. The proposed distance local optima
network model is a contribution of this article, which may find easy application
in other combinatorial optimisation problems.

Our analysis considered the well-known Chained-LK heuristic as implemented
in the Concorde software package. Chained-LK is an iterated local search ap-
proach combining LK-search with double-bridge as the perturbation or escape
operator. On two selected TSP instances, we found that while some funnels
are directly connected to other funnels via double-bridge escape moves, most
of them are not. This gives a visual insight of why Chained-LK produces sub-
optimal solutions in some runs, and justify the multiple restarts used in the
default Concorde implementation. We hypothesise that when Chained-LK pro-
duces sub-optimal solutions, it is because it gets trapped in a sub-optimal funnel
and the double-bridge escape mechanism, while generally efficient to escape local
optima, is not strong enough to escape some funnels. Future work will explore
alternative funnel-escape mechanisms such as the recently proposed Partition
Crossover [20,21], and will study Tunneling Crossover Networks for TSP [14].
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Abstract. This work analyses the behavior and compares the perfor-
mance of MOEA /D, IBEA using the binary additive £ and the hyper-
volume difference indicators, and AeSecH as representative algorithms of
decomposition, indicators, and e-dominance based approaches for many-
objective optimization. We use small MNK-landscapes to trace the dy-
namics of the algorithms generating high-resolution approximations of
the Pareto optimal set. Also, we use large MNK-landscapes to analyze
their scalability to larger search spaces.

1 Introduction

Recently, several algorithms are being proposed for many-objective optimization.
Preferred approaches to implement selection in many-objective optimization are
decomposition, performance indicators, and relaxations of Pareto dominance.
Decomposition based algorithms [1, 2] break down the many-objective prob-
lem into a large number of single-objective problems using scalarizing functions.
The single objective problems are then solved concurrently. The scalarizing func-
tions are usually defined in advance and remain fixed during the search. To cre-
ate a set of scalarizing functions we assume a distribution of the Pareto optimal
front and the algorithm aims to find good solutions that match our assump-
tions on distribution. Indicator based algorithms use a performance indicator
function to assess the quality of a set of solutions. These algorithms optimize a
single-objective function aiming to find the best subset of Pareto non-dominated
solutions according to the performance indicator [3-5]. Popular indicators are
additive €, hypervolume, and R2. Relaxations of Pareto dominance modify the
dominance relation to discern between initially incomparable solutions. One ef-
fective approach to relax Pareto dominance is e-dominance [6]. e-dominance
based algorithms expand the area of dominance of some non-dominated solutions
using a mapping function that depends on a parameter €. These algorithms use
e-dominance principles to update the archive [7] or sample the instantaneous
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population [8] in order to keep a subset of solutions spaced with the resolu-
tion induced by the € mapping function. These three different approaches have
led to many-objective algorithms that perform significantly better than conven-
tional multi-objective algorithms on many-objective problems. However, there
is not much work comparing them in a rigorous way and their dynamics solving
many-objective problems is not yet fully understood.

This work analyses the behavior of representative algorithms that imple-
ment the above three main approaches for selection, namely the decomposi-
tion based MOEA/D, the indicator based IBEA using the binary additive e-
indicator and the binary hypervolume difference-indicator, and the e-dominance
based AeSeH. As reference, it also includes results by NSGA-II [9]. First, we use
MNK-landscapes with 20 bits to trace the dynamics of the algorithms finding
new optimal solutions and compare their performance generating high-resolution
approximations of the Pareto optimal set. Then we use MNK-landscapes with
100 bits and analyze their scalability to larger search spaces. This work reveals
important strengths and limitations of these algorithms for many-objective op-
timization, explaining their behavior and performance when convergence and
diversity of the approximation is considered.

2 Algorithms

2.1 MOEA/D (Multiobjective EA Based on Decomposition)

MOEA/D [2] is a decomposition-based EMO algorithm that seeks high-quality
solutions in multiple regions of the objective space by decomposing the original
(multi-objective) problem into a number of scalarizing (single-objective) sub-
problems. MOEA /D defines a neighboring relation among sub-problems, based
on the assumption that a given sub-problem is likely to benefit from the current
solutions maintained in the corresponding neighboring sub-problems. More par-
ticularly, let i be the user-defined number of sub-problems. A set (A',... A\ ...,
M) of uniformly-distributed weighting coefficient vectors defines the scalarizing
sub-problems, and a population P = (2!,..., 2% ..., z*) is maintained such that
each individual z* maps to the current solution of the corresponding sub-problem
defined by A\’. In addition, a set of neighbors Neig(i) is defined by considering
the T closest weighting coefficient vectors for each sub-problem ¢ (including it-
self), i € {1,...,u}. At each iteration, the population evolves with respect to a
given sub-problem ¢. Two solutions are selected at random from Neig(i) and an
offspring is produced by means of crossover and mutation operators. Then, for
each sub-problem j € Neig(i), the offspring « is used to replace the current so-
lution 27 if there is an improvement in terms of the defined scalarizing function.
The algorithm iterates over sub-problems until a stopping condition is satisfied.

Different scalarizing functions can be used within MOEA /D. In this paper,
we use the weighted Chebyshev metric defined below.

g(x,\) = max ;- |zl* — fl(x)| (1)

ie{l,...,m}
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such that = belongs to the solution space, A is a weighting coefficient vector and
z* is a reference point.

2.2 IBEA (Indicator-Based Evolutionary Algorithm)

IBEA [3] tries to introduce a total order between solutions by means of an
arbitrary binary quality indicator I. The fitness assignment scheme of IBEA
is based on a pairwise comparison of solutions in a population with respect to
indicator I. Each individual x is assigned a fitness value measuring the “loss in
quality” in the population P if & was removed from it as follows

Fitness(x) = Z (—e 1@ Z)/y, (2)
x’eP\{x}

where £ > 0 is a user-defined scaling factor. Survival selection is based on an
elitist strategy that combines the current population P; with its offspring Oy,
iteratively deletes worst solutions until the required population size is reached,
and assigns the resulting population to P 1). Here, each time a solution is
deleted the fitness values of the remaining individuals are updated. Parent selec-
tion for reproduction consists of binary tournaments between randomly chosen
individuals using their fitness to decide the winners.

Several indicators can be used within IBEA. Here we choose to use the bi-
nary additive e-indicator (I.4) and the binary hypervolume difference-indicator
(Inp), as defined by the original authors [3].

I (z,2') = Leglaxn}{fz(m) ~ fi(a) ‘)
vl =) = {Hfi(il_) ?g():c) R (4)

where « > ' indicates & Pareto dominates «’. I.;(x, ') gives the minimum
value by which a solution & € P, has to, or can be translated in the objective
space in order to weakly dominate another solution x’ € P;. H(x) give the mul-
tidimensional volume of the objective space that is dominated by x. Iyp(x, ')
gives the hypervolume that is dominated by x’ but not by x, x,x’ € P;. More
information about IBEA can be found in [3].

2.3 The AeScH

Adaptive e-Sampling and e-Hood (AeSeH) [8] is an elitist evolutionary many-
objective algorithm that applies e-dominance principles for survival and parent
selection. There is not an explicit fitness assignment method in this algorithm.
Survival selection joins the current population P; and its offspring Q; and
divide it in non-dominated fronts F = {F;},i = 1,2,---, Np using the non-
dominated sorting procedure. In the rare case where the number of non-dominated
solutions is smaller than the population size |F;| < |P|, the sets of solutions F;
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are copied iteratively to Py until it is filled; if set F;, ¢ > 1, overfills Pyyq, the
required number of solutions are chosen randomly from it. On the other hand, in
the common case where |Fy| > |P|, it calls e-sampling with parameter £,. This
procedure iteratively samples randomly a solution from the set F7, inserting the
sample in Py and eliminating from Fj solutions e-dominated by the sample.
After sampling, if P11 is overfilled solutions are randomly eliminated from it.
Otherwise, if there is still room in Py, the required number of solutions are
randomly chosen from the initially e-dominated solutions and added to Pi41.

For parent selection the algorithm first uses the procedure e-hood creation to
cluster solutions in objective space. This procedure randomly selects an individ-
ual from the surviving population and applies e-dominance with parameter 5. A
neighborhood is formed by the selected solution and its e5-dominated solutions.
Neighborhood creation is repeated until all solutions in the surviving population
have been assigned to a neighborhood. Parent selection is implemented by the
procedure £-hood mating, which sees neighborhoods as elements of a list that
are visited one at the time in a round-robin schedule. The first two parents are
selected randomly from the first neighborhood in the list, the next two parents
are selected randomly from the second neighborhood, and so on. When the end
of the list is reached, parent selection continues with the first neighborhood in
the list. Thus, all individuals have the same probability of being selected within a
specified neighborhood, but due to the round-robin schedule individuals belong-
ing to neighborhoods with fewer members have more reproduction opportunities
that those belonging to neighborhoods with more members.

Both epsilon parameters €5 and €5 used in survival selection and parent
selection, respectively, are dynamically adapted during the run of the algorithm.
Further details about AeSeH can be found in [8].

3 Test problems, performance measures, and algorithms
parameters

To evaluate the algorithms we use small and large MNK-landscapes [10] ran-
domly generated with M = 3, 4, 5, 6 objectives. The small landscapes are defined
with N = 20 bits and K = 1 epistatic bit (5%). We enumerate these landscapes
and analyze the dynamics of the algorithms respect to the optimum set. The
size of the Pareto optimal set (POS) found by enumeration and the number of
non-dominated fronts are shown in Table 1 under columns |POS| and Fronts,
respectively. The same table also shows the corresponding fraction (%) of the
population sizes | P| to the | POS| for various population sizes investigated. Also,
we define large landscapes with N = 100 bits and K = 5 epistatic bits (5%) and
use them to study the scalability of the algorithms to larger search spaces.

We run the algorithms for a fixed number of T" generations, collecting in
separate files the sets of non-dominated solutions F; (¢) found at each generation.
The approximation of the POS for a run of the algorithm, denoted A(T), is
built by computing the non-dominated set from all generational non-dominated
sets Fi(t), t = 0,1,--- , T, making sure no duplicate solutions are included. In
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Table 1. Size of the Pareto optimal set |POS| and number of Fronts in the landscapes
with M = 3, 4, 5, and 6 objectives, N = 20 bits, and K = 1 epistatic bit. Fractions |P)|
/ |POS| of population size to the size of the POS (in %) investigated in this study.

|P| / [POS| (%)
|POS||Fronts| 50 100 200
152 258 |32.9 65.8 132.6
1,554 76 3.2 64 129
6,265 29 0.8 1.6 3.2
16,845 22 03 06 1.2

o v wl

general, the approximation at generation t is given by

X(t) = {A{t — 1) UFL(t) \ At — 1) N Fi(t)} (5)
Alt) ={z:z c XN By € X(1) y = =} (6)
A(0) = F1(0), (7)

where y > @ denotes solution y Pareto dominates solution «.
For small landscapes we report the basic resolution index « of the approxi-
mation at generation ¢ [11], expressed by

_ Hx:x e Alt) Nx € POSY|
B |[POS| ' ®

a(t)

which gives the fraction of the accumulated number of Pareto optimal (PO)
solutions found until generation ¢ to the size of the POS. The highest resolution
of the generated approximation of the POS is achieved when all Pareto optimal
solutions are found. We also report three generational search assessment indices
[11], the fraction 7;" of Pareto optimal solutions in the population at generation ¢
that are new respect to the previous generation, the fraction §; of Pareto optimal
solutions dropped at generation ¢, and the fraction ~; of non-dominated solutions
in the population that are not Pareto optimal solutions at generation ¢. Table 2
summarizes these indices.

For landscapes with N = 100 bits, where the Pareto optimal set is unknown,
we compute the non-dominated reference set R from the solutions found by
all algorithms. We report the Inverse Generational Distance (IGD) between
the approximation A(7T) found by the algorithms and the reference set R. In
addition, we also report the coverage C metric between the approximations A(T")
found by the algorithms.

All algorithms use two point crossover with rate pc = 1.0, and bit flip mu-
tation with rate pm = 1/N. In MOEA/D we use the Tchebycheff scalarizing
function, as mentioned above, set the neighborhood size to 10, as suggested
for knapsack problems in the original implementation of MOEA/D. The set of
weights vectors is generated according to the methodology presented in [12],
which projects the discrepancy given by a set of points contained in a (k — 1)-
dimensional unit cube into a (k — 1)-simplex that defines the set of weights
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Table 2. Generational search-assessment indices I;. Measures are taken on non-
dominated population Fi(¢) with respect to Fi(t — 1) and/or the POS, normalized
by population size | P].

I; Formula Comment

T H{x:x € Fit) Nx € Fi(t — 1) Ax € POS}| / | P||Possibly new PO solutions
O |{He:x e Fi(t—1) ANx & Fi(t) Ax € POS}| / |P||Dropped PO solutions

Y |{x: @ € Fi(t) Nx & POS}| / |P| Non-dominated, not PO sol.

=

vectors. One advantage of using this strategy is that we can define a well-
distributed set of weights vectors (in terms of low discrepancy) without depend-
ing of any constant as conventional methodologies do (see e.g. [2]) and regardless
of the dimension of the weights vectors. In AeSeH we set the reference neigh-
borhood size Hﬁg{: to 20 individuals. The mapping function f(x) —€ f (x)
used for e-dominance in e-sampling truncation and e-hood creation is additive,
fi' = fi+e,i=1,2,--- ,m. For IBEA, we observe the behavior of the algorithm
setting the scaling factor to k = 0.05 suggested in [3] and x = 0.001. IBEA finds
considerably fewer optimal solutions if k = 0.05. Here we report results obtained
setting x = 0.001. The algorithms run for T = 100 generations with population
sizes |P| = {50, 100,200} on landscapes with N = 20 bits and for T" = 1000
generation with population size |P| = 1000 on landscapes with N = 100 bits.
Results analyzed here were obtained from 30 independent runs of the algorithms.

4 Experimental Results and Discussion

4.1 Small landscapes

First, we analyze the basic resolution index «(T) of the approximation at the
end of the run, i.e. the ratio of accumulated number of PO solutions found to
the size of the POS. Results for all algorithms are shown in Fig.1 for 3, 4, 5,
and 6 objectives using population sizes of {50,100,200}. For convenience the
algorithms are labeled as A, Ie, Ihv, M, and N and correspond to AeSeH, IBEA
I+, IBEA Iyp, MOEA/D, and NSGA-II, respectively.

For M = 3 objectives, note that AeSeH finds more Pareto optimal solutions
than the other algorithms for the three population sizes tried here. MOEA /D
finds more Pareto optimal solutions than NSGA-II for population size 50, but
the contrary is true for population sizes 100 and 200. IBEA I, and Iyp find
consistently fewer Pareto optimal solutions than the other algorithms. In M =3
the ratios of population size to the size of the Pareto optimal set are |P|/|[POS| ~
{33, 66, 133} (%) for |P| = {50, 100,200}, respectively. That is, the population
size is relatively large compared to the Pareto optimal set. In this case, note that
the difference in the resolution achieved by the algorithms reduces considerably
as the ratio |P|/|POS]| increases to very large values.

On the other hand, for 4, 5 and 6 objectives, note that overall MOEA /D finds
more Pareto optimal solutions than the other algorithms, followed by AeSeH.
NSGA-II scales up badly in the number of objectives and becomes similar or
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Fig. 1. Resolution of the approximation at the end of the run «a(T), i.e. ratio of accu-
mulated number of Pareto optimal solutions found to the size of the POS. Population
sizes 50, 100, and 200 for 3, 4, 5, and 6 objectives. Algorithms AeSeH (A), IBEA I,
(I.), IBEA Iip (Iny), NSGA-II (N) and MOEA/D (M).

worse than IBEA I, and IBEA Iyp. In M = 4 the ratios are |P|/|POS| ~
{3.2, 6.4, 12.9} (%). In this case the advantage of MOEA /D over AeSeH seen
for ratios 6.4% and 3.2% disappears for the ratio 12.9% (|P = 200]). In M =5
and M = 6 the ratios |P|/|POS| used in our experiments are around {0.8, 1.6,
3.2} (%) and {0.3, 0.6, 1.2} (%). These ratios are quite small and the superiority
of MOEA /D to achieve a better resolution is undisputed.

In 3, 4, and 5 objectives landscapes with N = 20 bits the algorithms can
hit easily the Pareto optimal set after few generations. In M = 6 there are few
optimal solutions even in the random initial population. Therefore, the above
results reflect mostly the ability of the algorithms to continue discovering Pareto
optimal solutions once they hit the Pareto optimal set.

In the following we analyze the dynamics of the algorithms for M = 3 ob-
jectives with population size |P| = 50, where | P| is 32.9% of the |POS], and for
M = 6 with |P| = 200, where |P| is 1.2% of the |[POS|. Our aim is to understand
the behavior of the algorithms under small and large ratios |P|/|POS| and ex-
plain how the algorithms achieve the resolutions observed in Fig.1. This analysis
will also help understand how the scalability to larger search spaces could be
affected by the dynamics of the algorithms.
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Fig. 2. Pareto optimal solutions in the population that are new respect to the previous
generation. Population sizes 50 and 200 for 3 and 6 objectives, respectively. Algorithms
AeSeH, MOEA/D, and IBEA Inp.

Fig.2 shows the fraction 7,7 of Pareto optimal solutions that are new in
the population respect to the previous generation. That is, 7;~ includes Pareto
optimal solutions that are being rediscovered and also those seen for the first
time. Note that 7;% in AeSeH and MOEA /D peak during the initial generations
and remain close to its peak value throughout the generations. However, 7, in
AeSeH is smaller than in MOEA /D (around half), both in M = 3 with |P| = 50
(32.9% of the |POS|) and M = 6 with |P| = 200 (1.2% of the |POS]). In
the case of IBEA, after 7,7 has reached its peak rapidly drops to a very small
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Fig. 3. Pareto optimal solutions dropped from the population. Population sizes 50 and
200 for 3 and 6 objectives, respectively. Algorithms AeSeH and MOEA/D.

value, indicating that IBEA rediscovers and/or finds very few new Pareto optimal
solutions after 30 generations.

Fig.3 shows the ratio d; of Pareto optimal solutions in the population that
are dropped over the generations. These dropped solutions are replaced by other
non-dominated solutions, optimal or not. Note that the trends of the curves are
similar to those of 7;% shown in Fig.2. MOEA/D drops almost three times as
many Pareto optimal solutions as AeSeH in both cases, M = 3 with |P| = 50
(32.9% of |POS|) and M = 6 with |P| = 200 (1.2% of |POS]|). IBEA drops
very few solutions, particularly after the algorithm has evolved few generations
(results are not included here due to space limitations).

Fig.4 shows the ratio 7; of solutions that are non-dominated in the population
but are not Pareto optimal. Note that v in AeSeH is larger than in MOEA/D
during the initial 20 or 10 generations, where the algorithms are approaching
the optimal front and few solutions in the population are expected to be Pareto
optimal. However, after this initial period, when a significant number of Pareto
optimal solutions should have accumulated in the population ; is three times
higher in MOEA /D than in AeSeH.

To summarize, whether the fraction |P|/|POS]| is small or large, MOEA/D
discovers and rediscovers more Pareto optimal solutions than AeSeH. However,
MOEA/D also drops more optimal solutions than AeSeH and includes in its
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Fig. 4. Non-dominated solutions in the population that are not Pareto optimal. Pop-
ulation sizes 50 and 200 for 3 and 6 objectives. Algorithms AeSeH and MOEA/D.

population a larger number of non-dominated non-Pareto optimal solutions than
AeSeH. The discovery of new Pareto optimal solutions together with the ability
to drop and replace them with other Pareto optimal solutions can be seen as
an exploitative feature of the algorithm to continue reaching optimal solutions
from optimal solutions. However, Pareto optimal solutions are also replaced with
non-optimal solutions. In this case, the algorithm steps down to inferior solutions
and tries to climb back again. This feature is more explorative and could help
the algorithm to scape local optima, or to reach optimal solutions that cannot
be reached easily from other optimal solutions. These two features are observed
in both MOEA /D and AeSeH. However, the indices explored here suggest that
exploration in MOEA/D is more intense than in AeSeH. The better approxi-
mation achieved by AeSeH on 3 objectives, where there are more fronts to be
climbed towards the Pareto optimal set, and the better approximations achieved
by MOEA/D on larger number of objectives, where there are less fronts to be
climbed, are an indication that this explorative feature could impact greatly the
performance of the algorithm. In larger search spaces, it is not so simple to hit
the Pareto optimal set. There, too much exploration could be detrimental to the
performance of the algorithm.

An important question is how the algorithms come to drop Pareto optimal
solutions from the population, particularly in favor of inferior solutions. In dom-
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inance based algorithms this could happen during truncation when the number
of non-dominated solutions obtained from the combined population of parents
and offspring is larger than the size of the population. The scope of the Pareto
relation between solutions is the population, and not all points in the landscape.
Thus, solutions that appear non-dominated in the population may actually be
dominated by other solutions in the landscape. For example, when the algorithm
hits parts of the optimal front, even if some solutions in the combined population
of parents and offspring are optimal others may be suboptimal and still appear
non-dominated. In this case, Pareto optimal solutions could be dropped in favor
of suboptimal solutions when the subset of surviving solutions is selected, be-
cause a dominance based algorithm cannot distinguish between non-dominated
solutions. It is important to emphasize that although inferior solutions in the
landscape may appear non-dominated by an optimal solution (superior solutions
in general) in the population, dominance never reduces the rank of an optimal
solution. In general, dominance never reduces the rank of solutions that are
superior in the landscape (in the Pareto sense).

In the case of decomposition algorithms, by definition there is a different func-
tion for each sub-problem that provides a more strict order between solutions.
In a combinatorial problem, the optimal solution for a sub-problem is hopefully
a Pareto optimal solution. Other solutions are inferior, even if they are Pareto
optimal in the multi-objective landscape. In general, from the Pareto dominance
perspective, solutions that are superior in the multi-objective landscape could be
ranked lower than inferior solutions. This is an important difference with domi-
nance based approaches. When the algorithm hits the Pareto optimal set, each
optimal solution in the population will be associated to one or few subproblems.
These Pareto optimal solutions could be dropped in favor of a solution with
higher rank in the subproblem, whether this better ranked solution is superior
or not in the Pareto sense.

In the case of IBEA, the algorithm tries to introduce a total order between
solutions giving higher rank to solutions located towards the ideal point. Thus,
IBEA tends to converge towards the subset of solutions with highest rank located
in the central region of objective space, which cardinality is the size of the
population. Once there, the continuous sampling from that subset could lead to
discover other Pareto optimal solutions. However, they will have a rank inferior
to those in the population and thus are not eligible to replace optimal solutions.
After a while, the algorithm cannot find new solutions from the same set and
stagnates. Due to the total order, this algorithm includes features that can help
convergence in larger subspaces, thought diversity could still be an issue.

4.2 Large landscapes

In this section we present results of the algorithms on landscapes with N = 100
bits in order to analyze their scalability to larger search spaces. Fig.5 and Fig.6
show the inverse generational distance IGD of the approximation obtained by
the algorithms and the coverage C' metric between the approximations of AeSeH
and the other algorithms, respectively. For these problems we don’t know the

31



12

AAAAAAAAAAAAAAAA

(a) M=3 objectives (b) M=4 objectives
— —_—
= T
(¢) M=5 objectives (d) M=6 objectives

Fig. 5. IGD. Algorithms AeSeH (A), IBEA L.y (I.4), IBEA Irp (Irp), NSGA-II (N)
and MOEA/D (M).

Pareto optimal set, so we compute IGD taking as reference the non-dominated
set obtained from the non-dominated solutions found by all algorithms.

First, looking at /G D in Fig.5, note that AcSeH achieves better (lower) IGD
than the other algorithms in 3, 4, 5 and 6 objectives. In 3 objectives, IBEA I +,
IBEA Iyp, MOEA/D and NSGA-II achieve similar IGD. However, for M > 3
objectives IBEA I_+ is the second best algorithm in terms of IGD. For M = 4
and M = 5 there is not much difference between IBEA Iyp and MOEA/D.
However, for M = 6 MOEA/D is significantly better than IBEA Iyp. NSGA-II
is overall the worst algorithm

Next, looking at coverage C' in Fig.6, note that for M =3 C(A,") > C(-,A)
for all algorithms Ie+, Thv, M, and N. This indicates that solutions of AcSeH
dominate more solutions of the other algorithms and fewer solutions of AeSeH
are dominated by solutions of the other algorithms. Increasing the number of ob-
jectives above 3, the dominance gap between AeSeH and MOEA /D and between
AeSeH and NSGA-IT increase. However, fewer solutions by IBEA algorithms are
dominated by AeSeH. For example in M = 6 objectives, in average around 3%
of IBEA Iyp’s solutions are dominated by AeSeH and around 20% of AeSeH’s
solutions are dominated by IBEA Iy . Between the two IBEA algorithms, C is
slightly better for Iyp than for I, . This however depends strongly on the value
set for k in IBEA.
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Fig. 6. C metric. Algorithms AeSeH (A), IBEA I,y (I.4), IBEA Inp (Iup), NSGA-II
(N) and MOEA/D (M).

These results complement our analysis of the previous section and confirms
our expectation that too much exploration by MOEA /D could be detrimental to
its performance in larger landscapes. It also shows that IBEA can find a subset
of well converged solutions. However, it does it at the expense of not finding
a well spread set of solutions. AeSeH seems to have a good balance between
convergence and diversity, which favors its scalability to larger landscapes. It
will be interesting to find ways to control the exploration/exploitation features
of the algorithms studied here to improve their performance, whether we scale
up the objective space or the search space.

5 Conclusions

This work analyzed and compared the performance of MOEA /D, IBEA using
the binary additive ¢ and the hypervolume difference indicators, and AeSeH
for many-objective optimization. We traced the dynamics of the algorithms in
small MNK-landscapes, performed and off-line analysis of the Pareto optimal so-
lutions discovered and dropped at each generation, and compared the algorithms
for their ability to generate high-resolution approximations of the Pareto optimal
set. Our analysis in small landscapes showed that exploration in MOEA/D is
more intense than in AeSeH. This favors MOEA /D in small landscapes as we in-
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crease the number of objectives, where is relatively easy to hit the Pareto optimal
set and exploration is more important to increase the resolution of the approx-
imation. However, in large landscapes too much exploration hinders MOEA /D
and AeSeH generates approximations with better convergence and diversity,
regardless of the number of objectives. IBEA converges to the central region
of objective space, achieving low resolutions in small landscapes. In large land-
scapes this results in a subset of solutions with very good convergence properties,
but poorly spread. In the future we would like to find ways to control the ex-
ploration/exploitation features of the algorithms to improve their performance
when we scale up the objective and search spaces.

References

1. E. Hughes,“MSOPS-II: A General-Purpose Many-objective Optimiser”, Proc.
IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3944-3951, 2007.

2. Q. Zhang and H. Li, MOEA/D: A Multi-objective Evolutionary Algorithm Based
on Decomposition, IEEE Trans. on Evol. Computation, 11(6), 712-731, 2007.

3. E. Zitzler, S. Kunzli, “Indicator-Based Selection in Multiobjective Search”, Proc.
8th Int’l Conference on Parallel Problem Solving from Nature PPSN VIII, Springer,
Lecture Notes in Computer Science, vol. 3242, pp. 832-842, 2004.

4. N. Beume, B. Naujoks, M. Emmerich, “SMS-EMOA: Multiobjective Selection
Based on Dominated Hypervolume”, Furopean Journal on Operational Research,
vol. 181, no.3, pp.1653-1669, 2007.

5. C. Igel, N. Hansen, S. Roth, “Covariance Matrix Adaptation for Multi-objective
Optimization”, Evolutionary Computation, 15(1), 1-28, 2007.

6. M. Laumanns, L. Thiele, K. Deb, E. Zitzler, “Combining Convergence and Diver-
sity in Evolutionary Multi-objective Optimization”, Ewvolutionary Computation,
10(3), 263-282, 2002.

7. D. Hadka and P. Reed, “Borg: An Auto-adaptive Many-objective Evolutionary
Computing Framework”, Evolutionary Computation, 2(2), 231-259, 2013.

8. H. Aguirre, A. Oyama, and K. Tanaka, “Adaptive e-Sampling and e-Hood for
Evolutionary Many-Objective Optimization”, Proc. 7th Int’l Conf. on Evolutionary
Multi- Criterion Optimization, Springer, LNCS, vol.7811, pp. 322-336, 2013.

9. K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, “A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II”, KanGAL
report 200001, 2000.

10. H. Aguirre and K. Tanaka, “Insights on Properties of Multi-objective MNK-
Landscapes”, Proc. 2004 IEEE Congress on Evolutionary Computation, IEEE
Service Center, pp.196-203, 2004.

11. H. Aguirre, A. Liefooghe, S. Verel and K. Tanaka, “An Analysis on Selection
for High-Resolution Approximations in Many-objective Optimization”, Proc. 13th
Int’l Conference on Parallel Problem Solving from Nature, Springer, Lecture Notes
in Computer Science, vol. 8672, pp. 487-497, 2014.

12. S. Zapotecas Martinez, H. Aguirre, K. Tanaka and C. Coello, “On the Low-
Dyscrepancy Sequences and Their use in MOEA/D for High Dimensionality Ob-
jective Spaces”, Proc. 2015 IEEE Congress on Evolutionary Computation, IEEE
Press, to appear, 2015.

34



35



Traffic Signal Optimization:
Minimizing Travel Time and Fuel Consumption

Rolando Armas, Herndn Aguirre, Sail Zapotecas-Martinez, and Kiyoshi Tanaka

Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 JAPAN
{rolando.armas@iplab., ahernan@, zapotecas@, ktanaka@}shinshu-u.ac.jp

Abstract. This work integrates a multi-objective evolutionary algorithm with the
multi-agent transport simulator MATSim and the comprehensive modal emission
model simulator CMEM to analyze the evolutionary optimization of traffic sig-
nals minimizing travel time and fuel consumption on a real-world large scenario.
We simulate the movement of 20.000 vehicles on the transport network of a 5x8
Km? area of Quito including 70 signal lights. Our aim is to clarify the nature
and the extent of the conflict between these objectives. We also compare with a
single-objective optimization algorithm where only travel time is optimized and
evaluate the impact of the signals settings on gas emissions.

1 Introduction

The design of sustainable transport systems has received attention in recent years [1].
Population growth and urbanization trends have increased the demand of road networks
causing congestion. This adds substantial costs for transportation and business opera-
tions, increases the risk of accidents, and increases gas emissions affecting the envi-
ronment and population health [2]. Sustainable transport systems consider mobility,
societal and economic aspects aiming to improve life in urban centers and reduce the
impact on the environment.

Designing a sustainable transport system is a highly complex problem. Develop-
ments on simulators are helping to create computational models of real world transport
systems and emission models. Experts use these simulators to study the transport and
mobility system, gain knowledge of it and try alternative hypothesis and scenarios in
search of appropriate solutions from a sustainability standpoint. However, the dimen-
sion of the problem and the possible number of alternative solutions is overwhelmingly
high. Thus, an expert usually focuses on reduced parts of the system and can analyze
only a few alternatives that try to solve the problem partially.

Evolutionary computation provides the means to search and explore several alter-
natives, allowing the expert to direct evolution and focus its analysis on promising so-
lutions found by artificial evolution. Besides, since a sustainable transport system must
consider several criteria related to the mobility, the economy, the society and the en-
vironment, multi- and many-objective evolutionary approaches seem as an appropriate
tool to integrate with transport and emissions simulators to help understand the trade-
offs inherent to the sustainability problem.
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In the literature, there are some works related to single- and multi-objective opti-
mization that partially deal with sustainable transportation systems. For example, Kim
et al.[3] solves a road network design problem (RNDP) using a bi-level optimization
approach that reflects the different objectives between planners and network users. The
authors focused on the design of a very small network with six links and six nodes op-
timizing three objectives related to travel time, fuel consumption, and accessibility to
network’s nodes. Stolfi and Alba [4] implemented an evolutionary and rerouting algo-
rithm that suggests alternative routes to avoid traffic jams, showing that it is possible to
reduce travel times, greenhouse emissions, and fuel consumption. This approach uses
a single-objective optimization algorithm that combines all the criteria into one aggre-
gation function. The authors used four scenarios in a range between 2.5 and 7 Km?
with a number of vehicles between 1200 to 1400. Traffic lights were considered in the
scenarios but were not subject to optimization.

In this work we integrate the Multi-agent Transport Simulator MATSim [5], the
Comprehensive Modal Emission Model (CMEM) simulator [6], and a multi-objective
evolutionary algorithm. We simulate the movement of 20.000 vehicles on a transport
network that covers a significant part of Quito city and includes 70 signal lights. Our
aim is to study and understand in a large real-world scenario the influence of optimal
signal settings on travel time and fuel consumption. Particularly, we want to clarify the
extent of the conflict between these objectives, if any, when they are optimized simul-
taneously and how the settings of the signals relate to the trade-offs between them. We
also compare with a single-optimization algorithm where only travel time is optimized
and evaluate the impact of the signals settings on gas emissions.

2 Method

The three main components of the optimization system considered in this study are
the Multi-agent Transport Simulator MATSim [5], the Comprehensive Modal Emis-
sion Model (CMEM) simulator [6], and a multi-objective evolutionary algorithm. Fig.1
illustrates their interaction.

MATSim allows micro-simulation of agents moving on a transport system produc-
ing detailed information about the routes and movements of the agents. MATSim re-
quires as inputs the initial mobility plans for a set of agents and a model of the transport
infrastructure. MATSim computes initial routes for the agents based on heuristics and
simulates the traffic following the initial plans of the agents. Then it iterates to optimize
plans and routes for all agents in order to provide a system in an equilibrium state [7],
where no traveler can improve his travel time or utility function by unilaterally changing
routes. MATSim can be run with and without traffic lights. If traffic lights are specified,
MATSim simulates them microscopically using fixed-time controls [8].

CMEM is a microscopic emissions simulator that computes second-by-second tailpipe
emissions and fuel consumption based on different vehicle operating modes (modal),
such as idle, steady-state, cruise, and various levels of acceleration/deceleration [9]. It
is called comprehensive because it can predict emissions for a wide range of vehicle
/ technology categories and various operating conditions, such as properly function-
ing, deteriorated, malfunctioning. CMEM requires two groups of inputs, input operat-
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Fig. 1. Optimization System

ing variables and model parameters. The input operating variables include information
about the activity of the vehicles, that is second-by-second speed (from which acceler-
ation can be derived) and the slope of the road. The model parameters are determined
for each one of the vehicles used in the simulation according to the categorization es-
tablished by CMEM.

Before we run the optimizer, we prepare the initial mobility plans of the agents
as well as the model of the transport infrastructure and run MATSim without signal
lights until it reaches an equilibrium state. Also, we prepare the profiles of the vehicles
associated with the agents, which are required by CMEM.

The multi-objective evolutionary algorithm evolves a population of candidate solu-
tions. Each solution represents the configuration of all light signals (signal control) of
the transportation system under study. The algorithm minimizes simultaneously two fit-
ness functions, the average travel time and the fuel consumption of the agents that move
in the transport network. At each generation, to compute the fitness of a solution, the
evolutionary algorithm calls MATSim and CMEM, one after the other. MATSim sets
the signals of the transport system with the values specified by the tentative solution
provided by the evolutionary algorithm. Then, MATSim runs one iteration to simu-
late the movement of the agents following the mobility plans and routes that led the
system to the equilibrium state. The output generated by MATSim is used to compute
the average travel time of the agents. CMEM is called with the travel details of each
agent extracted from the MATSim output and the profiles of the vehicles prepared in
advance. The output generated by CMEM is used to compute the fuel consumption of
the agents. Once all solutions are evaluated, the evolutionary algorithm continues to the
next generation, stopping after a specified maximum number of generations has been
completed.

3 Evolutionary Algorithm

In this work we use the Adaptive e-Sampling and e-Hood (A&SeH) [10] algorithm to
search optimal solutions. AeSeH is an elitist evolutionary multi- and many-objective
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optimizer that applies e-dominance [11] principles both for survival selection and par-
ent selection. In the following, we describe the main features of the algorithm, repre-
sentation, operators of variation, and fitness functions used to study our system.

3.1 Ae&eSesH

Ae&SeH follows the main steps of a population-based evolutionary algorithm, i.e. parent
selection, offspring creation and survival selection, adjusting its operation depending
on whether the population contains dominated solutions or not.

To perform survival selection, the current population and its offspring are combined
and divided into non-dominated fronts using the non-dominated sorting procedure. If
the number of non-dominated solutions in the first front is smaller than the population
size, the sorted fronts of non-dominated solutions are copied one at the time to the next
population until it is filled; if the last copied front overfills the population, the required
number of solutions are chosen randomly from it to have the exact number specified
by the population size. On the other hand, if the number of non-dominated solutions in
the first front is larger than the population size, the first front is truncated to the size of
the population using the e-sampling procedure. e-sampling randomly chooses solutions
from the first front to include them in the surviving population, eliminating from the
front those solutions that are e-dominated by the chosen samples. As a result, solutions
in the next population are spaced according to the f(x) —* f (x) mapping function
and parameter &; used to compute e-dominance between solutions.

For parent selection, the algorithm first uses a procedure called e-hood creation
to cluster solutions in objective space and then applies €-hood mating to select par-
ents. When all solutions in the population are non-dominated, e-hood creation selects
randomly an individual from the population and applies e-dominance with mapping
function f(x) - f ' (x) and parameter g;. A neighborhood is formed by the selected
solution and its &,-dominated solutions. Neighborhood creation is repeated until all so-
lutions in the population have been assigned to a neighborhood. e-hood mating sees the
neighborhoods as elements of a list and visits them one at the time in a round-robin
schedule. The first two parents are selected randomly from the first visited neighbor-
hood in the list. The next two parents are selected randomly from the second neighbor-
hood in the list, and so on. When the end of the list is reached, parent selection contin-
ues with the first neighborhood in the list. On the other hand, when dominated solutions
are present in the population, &-hood creation makes sure that the solution sampled
to create the neighborhood is a non-dominated solution and &-hood mating uses binary
tournaments based on dominance rank to select parents within the neighborhoods. Both
epsilon parameters €; and g, used in survival selection and neighborhood creation, re-
spectively, are dynamically adapted during the run of the algorithm.

This algorithm has been shown to work effectively on continuos and discrete multi-
and many-objective optimization problems [10] [12] [13]. Further details about the al-
gorithm can be found in [10] and [12].

39



Stage r=1

on! Creen Time i imergreen Phase 1]
< he ——i<— [ —
H Green Time i intergreen2 !

Phase 2

Fig. 2. Traffic Light Components

S1 N S2 > Sh >
g O (O *
! G at | Gt at |! Gt at |
| Offset 1 | Offset 2 ., Offset h . |
: c1 1 11 : c2 62 ¢2,1 : o ch h h1 ¢h,2 :
' 'y ¢ 'y ¢
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3.2 Representation

The principal components of a traffic signal are cycle length, phase, offset, stage, green
and inter-green time. Cycle length is the time in seconds required for one complete color
sequence of the signal. A phase is the set of movements that can take place simultane-
ously. An Offset is the time lapse in seconds between the beginning of a corresponding
green phase at an intersection and the beginning of a corresponding green phase at the
next intersection. One stage is a green and inter-green time sequence (see Fig.2).

A signal S in junction £ is represented by set of integer variables expressed by

Sh = (Ch»eh’¢h,19”' 9¢h,l‘)5 (1)

where Cj, is cycle length, 6y, is the offset, and ¢, 1, - - , ¢y, are the green times for the
r phases of the signal. Signal S, represents one gene, and a set of signals constitute
the chromosome of an individual, i.e. a solution with the complete specification of all
signals considered in the system. Fig.3 illustrates the representation of a solution to a
system with % signals, each one with two phases. The ranges and constraints of these
variables are given in Eq.(2) — Eq.(8), where I, is the inter-green time at signal 4 for
phase r and P, is the total number of phases at signal 4. Equations Eq.(2) — Eq.(4)
represent the range for cycle length Ch, offset ), and green time ¢, ., respectively. Cy,in
is determined by identifying the signal that needs the longest duration just to accom-
modate the inter-green times and the minimum green times as shown in Eq.(5). Cyux
is set to 135 seconds. Inter-green is 3 seconds and minimum green time duration is 17
seconds for all signals as shown in Eq.(6). Eq.(7) ensures that the sum of the green
times in a signal together with inter-green do not exceed the cycle length set for the
signal. Eq.(8) establishes the maximum green time for the signal phase based on the
cycle time, inter-green and minimum green time.

Chmin < Ch < Chmax (2)
0<6,<Cr-1 3)
¢h,rmin < ¢h,r < ¢h,rmax (4)
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Cin = Max{(Z7" gpr + 20 Iy) 0 h=1,2...N} 5)
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Ch =S b + 2/ I Vh @)
Py Py
¢h,rmax = Ch - Z Ih,r - Z ¢h,ymin (8)
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3.3 Operators

To create offspring we follow the representation described above and apply crossover
with probability P, and mutation with probability P, per signal. If a signal undergoes
mutation, we apply one of the three mutation operators for cycle length, offset, and
green times with probability P,, ", P,,(°" and P,,°", respectively. The operators are
as follows.

Crossover: In this work we implement one point crossover taking each signal as an
atomic unit. The crossing point is selected randomly with equal probability in the range
[1,h - 1], where & is the number of signals. Then the crossover operator interchanges
complete signals between parents.

Cycle length mutator: This operator increases or decreases randomly with equal prob-
ability the cycle length of a signal using step size stepCt. If the new cycle length is out
of the specified range, we adjust it accordingly to be either Cp,,;, or C,,.... After that, it
is necessary to check whether offset time violates its constraint. If offset is larger than
the new cycle length, it is reset to new cycle length — stepOf f, where stepOf f is the
offset step size. Finally, for each signal phase the green times are adjusted proportion-
ally to the new cycle length. Due to the correlation of offset and green times to the cycle
length, this operator may act as a macro-mutation operator.

Green time mutator: This operator decreases the green time of one phase and adds it
to another phase using step size stepGt. To determine the phase that will decrease its
green time, we randomly visit the phases until we find one in which the decrement does
not violate the constraint for minimum green time ¢y, ,i,. The phase to which the green
time is added is also determined randomly among all phases, except the one in which
time was reduced.

Offset time mutator: This operator increases or decreases randomly with equal prob-
ability the offset time of a signal using step size stepOf f. If offset becomes negative,
it is reset to 0. Likewise, if offset is greater than the maximum cycle length Cy,,,..., it is
reset to Cpar — StepOf f.

3.4 Fitness Functions

In this work, we minimize two fitness functions, the average travel time and the total
fuel consumption of the agents that move in the network. To compute the fitness of
a solution, MATSim sets the signals of the system with the values specified by the
solution passed by the evolutionary algorithm, simulates the movement of the agents
following the routes that led the system to an equilibrium state, and outputs the time
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taken by each agent to travel each one of the links included in its route. A transport
network can be represented by a directed graph G = (N, A), where N represents nodes
and A represents links. The travel time for a given vehicle is

tiq = tx

ia

—

ia

a=1,.,A; i=1,.,V, )

where 1;, represents the travel time on link a for vehicle i, 77, denotes the time vehicle
exited link a (see Fig.1), £, denotes the time vehicle 7 entered link a, V is the number
of vehicles being simulated, A is the number of links in network, e is the entry node
and x is the exit node [14]. Thus, the average travel time, the first fitness function, is
expressed by
£ = Ziv=1 P tia,
Vv
subject to signal timing design and feasibility constraints shown in Eq.(2)- Eq.(8) [15].
The second fitness function corresponds to the fuel consumption of the agents along
their legs. It is computed from the output generated by CMEM, which is called along
with the travel details of the agents produced by MATSim and the profiles of the vehi-
cles. The second function is stated by

(10)

v.L
A=) (1
i=1 j=1

where V is the number of vehicles, L the number of legs, and c{ is the fuel consumption
(in grams/km) of the i vehicle at the j leg.

4 Simulation Results and Discussion

4.1 MATSim and CMEM Preliminaries

The geographical area of study is a large and important part of Quito (Ecuador). It
includes the business district, eight major universities, several hospitals, large malls,
two large parks, and one major soccer stadium, covering approximately 5x8 Km? as
shown in Fig.7. In this area, the slopes of the pathways are in the range from -15 to 15
degrees. For this experiment, we take into account all the pathways with free speeds in
the range from 30 to 80 Km/h. The network has 8192 links and comes from Geofabrik
and OpenStreetMap [16]. We use the Digital Elevation Model (DEM) from SavGIS
[17] to compute the slopes.

The number of simulated agents is 20.000. The mobility plan for each agent consists
of two main trips or legs: 1) from home to work, study, or others and 2) from work,
study, or others to home (see Fig.1). The plans are designed so that all agents move
first from each home location to different points along the area of study. Those points
are facility locations such as universities, workplaces and others like malls, and parks.
In their second trip, the agents move back home. The distribution of home locations,
workplaces, and education facilities for the mobility plan have been chosen taking into
account census data and a previous mobility study [18].
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The scenario includes 70 signal lights located on the main pathways with flows
in south-north-south, and east-west-east directions (see Fig.7). We run the multi-agent
transport simulator MATSim for 200 iterations, making sure it reaches a user equilib-
rium state without setting any traffic signal. The traffic simulation period is for 24 hours.
It takes approximately 10 hours of computation time to run MATSim for this number
of iterations. Traffic signals are optimized using the equilibrium state as an initial con-
dition.

CMEM uses a total of 55 static parameters to characterize the vehicle tailpipe emis-
sions for the appropriate vehicle/technology category. CMEM defines 24 Light-Duty
Vehicle (LDV) categories based on fuel and emission control technology, accumulated
mileage, power to weight ratio, emission certification level, and emitter level category.
We have selected 4 categories based on two main features: accumulated mileage and
emitter level category based on model year distribution according to transportation cen-
sus data [19]. Table 1 shows the vehicle categories chosen for our scenario. We assign
randomly a category to each agent according to the distribution obtained from the cen-
sus.

Table 1. CMEM Vehicle Categorization

LDV Categories
9 Tier 1>50K miles high power/weight|26 Ultra-Low Emission Vehicle
24 Tier 1>100K miles 27 Super Ultra-Low Emission Vehicle

4.2 Evolutionary Algorithm Experimental Setup

We use a fixed population size of 20. The initial population is created deterministically
as follows. We prepare 20 cycle lengths in the range [40, 135] seconds in steps of 5.
All solutions are set with a different cycle length, but all signals of a solution are set to
the same cycle length. The offset times of all signals are set to zero and green times per
phase are set to the same value according to the cycle length, i.e. green time = (cycle
length - inter-green) /2. That is, all signals are synchronized to start at the same time but
are not coordinated to allow the uninterrupted flow of vehicles along contiguous signals
in the same pathway.

For the operators, we set crossover rate to P, = 1.0 and mutation rate per signal to
P,, = 4/n, where n is the number of signals. The mutation rates for cycle length, offset
and green time operators are P, =05, P,,°0 =0.3 and P,,©” = 0.2, respectively.
The mutation steps are set to stepCt=5, stepOf f=10, stepGt=3 for cycle, offset and
green time, respectively. These mutation steps reduce considerably the search space.

We conduct 10 runs of the algorithm setting the number of generations to 50, use
different random seeds but all runs start with the same initial population. To evaluate one
individual, it takes in average 4 minutes to run MATSim and compute the first fitness
function, and 16 minutes to run CMEM and compute the second fitness function.
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4.3 Results

Fig.4 (a) shows the Pareto fronts found by the algorithm at generations {0, 5, 10, 15,25,
35,50} for one of the runs. Fuel consumption is converted to liters from kilograms
using a gasoline density of 0.755 Kg/liter. The intersection of the dashed lines marks
the fitness value of the solution at equilibrium state without signals. Note that a clear
trade-off between travel time and fuel consumption can be observed at generation 0 in
the initial population. As evolution proceeds, travel time and fuel consumption reduce
and approach the values observed at equilibrium state, but the number of non-dominated
solutions reduce to a few and in some generations even to one. These results illustrate
that the optimization of signals allowing different cycle times and coordinating them
by properly setting their offsets lead to significant reductions in both fuel consumption
and travel time. Also, the number of non-dominated solutions suggests that the range of
the trade-offs reduce conform we optimize both objectives. This is expected since both
objectives functions are correlated in the sense that a reduction in travel time implies
that the engines are turned-on for a shorter time and therefore, use less fuel.
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Here an important question is whether optimizing a single fitness function, either
travel time or fuel consumption, could be enough to minimize both objectives. We ver-
ify this by optimizing only travel time with an elitist single-objective optimization al-
gorithm [20] set with the same initial population, operators, and parameters used for
the bi-objective optimizer. Fig.4 (b) shows the Pareto fronts found at the last genera-
tion of the 10 runs of the bi-objective optimization algorithm. It also includes in black
squares the best solutions found by the single-objective optimization algorithm. From
this figure note that overall results by the bi-objective optimization are better than by the
single-objective optimization, thought both point towards the same minimum values.
These results suggest that although there could be few non-dominated solutions in the
region where both objectives are minimized the inclusion of the second objective helps
to perform a more effective optimization. It is also worth noting that variance by the
single-objective optimization is larger than by the bi-objective optimization. Nonethe-
less, the multi-objective optimization could also get trapped in local optima far away
from the region of optimality, as observed for run 9 in Fig.4 (b) where travel time and
fuel consumption are around 300 seconds and 800 liters worse than the solutions with
minimum fitness found in run 4. This is a computationally very expensive problem, and
not many runs are possible. Thus, it is important to reduce the variance of the solutions
found in different runs to increase the reliability of the algorithm. To that end, we should
analyze further the operators, population size, and selection of the algorithm in order to
find ways to escape local optima.

Fig.4 (a) and (b) illustrate the trade-offs in objective space. In the following, we
analyze the settings in decision space, particularly cycle length and offset of the signals.
Fig.5 shows the non-dominated solutions in the initial population, fuel consumption
over travel time (labeled with cycle length), where all signals of a solution are set to
the same cycle length, offset is set to 0, and green times are similar in both traffic flow
directions. Note from the figure that when signals are not coordinated, offset set to 0,
smaller travel times are achieved by longer cycle lengths and lower fuel consumptions
are achieved by shorter cycle lengths. Fig.6 shows box-plots of the cycle length of the
best solutions in travel time found by the single- and bi-objective optimization. Note
that the optimized solutions include shorter cycle lengths than the best solutions in
the initial population and that the cycle lengths by the bi-objective optimization are
shorter than by the single-objective optimization. For the single-objective algorithm the
highest ranked solution are the ones with the larger cycle length. So, those solutions
will be preferred for mating and reproduction. This could imply a loss of diversity of
solutions with shorter cycle lengths. However, as indicated above, optimal solutions
are a combination of signals with shorter but different cycle lengths. In the case of the
bi-objective optimizer, solutions with shorter cycle length will also have a high rank
thanks to the second objective, i.e. fuel consumption. Thus, the bi-objective optimizer
will not suffer from a lack of diversity of solutions with shorter cycle length.

Fig.7 shows the cycle length of the signal lights of the solutions with shorter travel
time by the single and bi-objective optimization approaches, deployed on the map of
the area of study. Similarly, Fig.8 shows the offsets of the signal lights. From Fig.7 it is
worth noting that a pattern can be seen in the solutions produced by both approaches. In
both solutions, the largest cycle lengths are assigned to signals located in the south-north
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avenue in the western part of the city. This illustrates the kind of design knowledge we
aim to extract from the optimization process, useful to understand and decide the final
settings of the signal lights. From Fig.8 it should be noted that both solutions include
some signals with offset 10 or 20, however still many of them remain 0. This is due
to the short-term evolution used in this work. The proper setting of offsets undoubtedly
helps improve traffic. In the future, we should look for ways to enhance the optimization
of offsets.

Table 2. Scenario Emissions

Eq. g=0 g=0 g=50 g=50

State  C;,=130 C,=50 Bi-obj. Single-ob;j.
Travel Time (s) 608 1320 1513 709 734
Fuel Consum. ()| 15817 18384 17780 16665 16858
HC (Kg) 121.97 129.76 128.26 125.81 126.32
CO (Kg) 2623.90 2764.50 2762.97 2736.81 2737.88
NO, (Kg) 27744 25371 26234 264.18 261.89
CO; (Kg) 33347.37 39248.40 37810.00 35188.40 35647.50

Table 2 shows travel time and fuel consumption together with HC, CO, NO,, and
CO, emissions produced by all agents corresponding to the equilibrium state without
traffic signals. Also solutions including traffic signals at generation O with smallest val-
ues in travel time and fuel consumption, and solutions with traffic signals that minimize
travel time by the bi- and single-objective optimizer at generation 50. These results il-
lustrate that in addition to minimizing travel time and fuel consumption, the various
kinds of emissions can also be reduced significantly if traffic lights are optimized.

Finally, Fig.9 shows the traffic volume for the one-day simulation and during peak
hours observed for the scenario studied in this work. Note that the main flows of agents
go south-north-south rather than east-west-east, which reflects the demographics of the
city.

5 Conclusion and Future Work

In this work, we analyzed the evolutionary optimization of traffic signals minimizing
simultaneously travel time and fuel consumption on a large real-world scenario. We
integrated a multi-objective evolutionary algorithm with the transport simulator MAT-
Sim and the emissions model simulator CMEM. We used as a case study the transport
network of a 5x8 Km? area of Quito set with 70 signal lights, and simulated one day
traffic of 20.000 agents moving according a two-leg mobility plan. We showed that there
is a clear trade-off between travel time and fuel consumption when the signals are set
with the same cycle length and are not coordinated (there is not offset between the start
of the cycles). We also showed that the optimization of the signals allowing different
cycle lengths between signals and coordinating them by properly setting their offsets
can reduce significantly both travel time and fuel consumption. This reduces the range
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of the trade-offs between the two objectives. Further, we verified that the bi-objective
optimization approach produces better results than a single-objective approach that op-
timizes only travel time. We showed evidence that the single-objective algorithm is
misled by the initially uncoordinated signals where larger cycle lengths allow shorter
travel times, whereas combinations of coordinated signals with shorter cycle lengths
lead to better travel times and lower fuel consumption. This was not an issue for the
multi-objective optimizers because the second objective related to fuel consumption
favors shorter cycle lengths even in uncoordinated signals.

As future works, we should improve the evolutionary algorithm to reduce its vari-
ance and enhance its reliability for short-term evolution and few fitness evaluations.
Also, we should study other mobility plans and scenarios for the agents. Furthermore,
in addition to optimizing traffic signals, we would like to add new variables and opti-
mization criteria to study other important aspects of sustainable transport systems.
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Abstract. The idea of exploiting Global Sensitivity Analysis (GSA)
to make Evolutionary Algorithms more effective seems very attractive:
intuitively, a probabilistic analysis can prove useful to a stochastic opti-
misation technique. GSA, that gathers information about the behaviour
of functions receiving some inputs and delivering one or several outputs,
is based on computationally-intensive stochastic sampling of a parame-
ter space. Nevertheless, efficiently exploiting information gathered from
GSA might not be so straightforward. In this paper, we present three
mono- and multi-objective counterexamples to prove how naively com-
bining GSA and EA may mislead an optimisation process.

1 Introduction

Sensitivity analysis is the study of how the uncertainty in the output of a math-
ematical function can be apportioned to different sources of uncertainty in its
inputs [19]. In general, Sensitivity Analysis can be applied to any function f,
R™ — RP. In practice, this technique is widely exploited by the modeling com-
munity, to analyze the behaviour of models with respect to their parameters,
and to later plan new experiments to reduce the uncertainty on the most sensi-
tive parameters. Indeed, a model can be defined as a function f : X;, K, — Y,
whose objective is to simulate a real physical phenomena. Knowing the initial
conditions represented by the vector X;, the model produces the final condi-
tions of the studied phenomena, Y,,,. In real-world cases, the parameters of the
function K, are not known with precision but rather defined by a range value
of uncertainty. Many sensitivity analysis tools perform a stochastic sampling of
considerable magnitude in the space of parameters, and then exploit statistical
techniques to derive information from this large quantity of data.

It is easy to see the potential interest of data collected through sensitivity
analysis for an optimisation of the parameters of the model: not only sensitivity
analysis provides a fine-grained sampling of a search space, but it also conveys
useful information about how each parameter influences each output. This holds

* This work has been funded by the French National Agency for research (ANR), under
the grant ANR-11-EMMA-0017, EASEA-Cloud Emergence project 2011, http://
www.agence-nationale-recherche.fr/
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true especially for evolutionary optimisation techniques, that are based on a
biased stochastic sampling of the search space. Re-using the extensive amount of
computation performed for a sensitivity analysis to improve the performance of
an evolutionary algorithm (EA) targeting the same search space, sounds not only
sensible, but also extremely appealing. Not surprisingly, the literature already
shows approaches that exploit the synergy between sensitivity analysis and EAs
[7]. However, making use of the information conveyed by sensitivity analysis
might not be as straightforward as it seems.

In this paper, we exhibit three case studies, specifically designed to deceive
an EA exploiting sensitivity analysis data. Experimental results show that even
a state-of-the-art EA is unable to find the optimal parameter configuration for
the problems, if biased by the information provided by sensitivity analysis; on
the contrary, the same algorithm routinely converges on the global optimum if
no aprioristic knowledge is given, thus proving that a naive use of sensitivity
analysis information might actually be harmful to the optimisation process.

The rest of the paper is organized as follows: Section 2 recalls a few basic
concepts of sensitivity analysis, with a particular focus on the analysis of joint
variation of parameter interactions, and lists previous works at the interface
of sensitivity analysis and EAs. Section 3 discusses one of these combination
strategies. Counterexamples and experimental results are illustrated in Section
4, while the implications are discussed in Section 5. Finally, Section 6 concludes
the paper.

2 Background

2.1 Sensitivity analysis: Global and Local

Sensitivity analysis is a technique used to understand how variation in the out-
put of a function can be apportioned qualitatively or quantitatively to different
uncertain input sources. Sensitivity analysis techniques can be broadly classified
as local or global. Local sensitivity analysis (LSA) is the simpler approach, where
only one function variable is perturbed at a time, while the remaining are fixed
to a nominal value. Different studies have shown that limiting the analysis to lo-
cal sensitivities might deliver unreliable results [20, 23]. Thus, global sensitivity
analysis (GSA) [19] that examines the joint variation of variable interactions,
seems to be better suited for complex, nonlinear models.

2.2 Global Sensitivity Analysis

GSA is mainly used for two goals: factor prioritizing, deciding which variable
uncertainty to work on, in order to reduce the uncertainty of the output; and
factor fixing, highlighting which variables can be fixed to an arbitrary value
with few influence on the output. One of the most common approaches has been
developed by Sobol [21]. Impacts of each individual decision variable and its
interactions with other variables on performance objectives are represented with
the following sensitivity indices, taking values in [0, 1].

52



First-order sensitivity indices are used for the factor priority problem. A
first-order index S; is associated to each parameter K;, and represents the direct
influence of its uncertainty on an output Y:

_ VIB(Y|K)]

=)

It corresponds to the part of the variance of Y explained directly by the un-
certainty in K;: V[E(Y|K;)] is the conditional expectation of Y knowing K,
fixed at each possible value within the uncertainty range of K;. Fixing to its
true value the variable associated to the highest first-order index, would lead to
the greatest reduction in the variance of the output.

Higher-orders sensitivity indices correspond to interaction effects. For
instance, indices of order 3 S;;i are associated to each triplet of parameters
K iy K 79 K k-

VIE(Y|K;, Kj, K)]

V(Y)
The sum of all n-order indices is always equal to 1. The computation of higher-
order indices is expensive, as there are (Z) of such indices for k& parameters. In
practice, they are rarely used. They are not considered in this paper.

Total-effect sensitivity indices are used for the factor-fixing problem. A
total-effect index is attributed to each parameter, and it is interpreted as the
sum of all n-order indices involving the considered parameter. A total effect
index St; represents how much the uncertainty of a parameter, combined with
every other uncertainty, is responsible for the output variance:

VIE(Y|Ki)]
V(Y)

Sijk =

Spi=1-

K.i=Ki,Ko,...K;_1,K;1,..K, is the set of all parameters except K;. There-
fore, if a parameter has a total-effect index near zero, its uncertainty has nearly
no influence on the output variance. For this reason, this parameter can be fixed
to an arbitrary value inside his interval of uncertainty without affecting much
the variance of the output.

2.3 Sensitivity Analysis and Optimisation

In order to compute GSA indices, the search space of a group of parameters is
sampled, aiming at finding the parameters whose variation influences the output
of a function (or a model) the most. It is therefore not surprising that several
attempts have been performed to combine Sensitivity analysis with optimisation
tools, especially those featuring a stochastic sampling of the search space.

A considerable number of research lines exploit LSA to perform what is
termed robust optimisation [2], a set of techniques which seek a certain amount of
robustness against uncertainty, seen as variability in the value of the parameters
of the problem or its solution. Some work, like [1] also propose a multi-objective
strategy to assess the identifiability and LSA of the parameters of a system.
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In [22], EAs are used to find the worst possible parameter settings for a model,
maximising the distance between experimental data and model predictions. The
results are then exploited to evaluate the influence of each parameter on the
outputs. While surely interesting, this approach lacks the statistical support of
Global Sensitivity Analysis, providing the user with a general impression of the
most influential parameters.

Another research line, presented in two technical reports [17,16], aims at
using the points sampled by a CMA-ES algorithm [11] during the optimisation
process as the basis for a sensitivity analysis, through a de-biasing of the sam-
pling. In practice, weights are used on the sampling points, on the basis of the
covariance matrix’ determinant at each generation, to express their bias with
respect to a completely random process. This methodology raises several theo-
retical questions that will need to be thoroughly analyzed before its widespread
application.

In [7], the authors present an example where the use of GSA improves the EA
efficiency. They use GSA measurements to reduce the problem’s dimensionality,
first optimising the values of a sub-set of the most sensitive parameters, and then
restarting the evolution from the solutions found in this way, finally optimising
the remaining values. However, preliminary results presented in [3] hint that this
strategy may not always be viable.

3 Adaptive dimensionality reduction based on GSA

The idea of using progressive refinements techniques to perform a search in high
dimensional spaces appeared as attractive for a long time. This very simple idea
is at the origin, for instance, of the messy genetic algorithm scheme proposed by
Goldberg et al. 25 years ago [8] : “Nature did not start with strings of length two
million (an estimate of the number of genes in Homo sapiens) and try to make
man. Instead, simple life forms gave way to more complex life forms, with the
building blocks learned at earlier times used and reused to good effect along the
way.” Messy GAs rely on a variable length bit-string representation of the search
space made of a list of couples (locus, allele value) specifying the value of a bit at
a given place of the genome. In this way some genes may be over-specified (several
possible values) while other may be under-specified (no affected value). Fitness
calculation is then performed after an additionnal stage relying on various rules
for inferring uncomplete string values. This scheme has been extended in various
ways including continuous search spaces [18,12]. It implements a self-adaptive
progressive refinement, where the selection of primary, “heavy” parameters, is
let to evolution.

Adaptive schemes (in the sense of “non-self-adaptive”) may also be consid-
ered in this context, the critical point being an a priori knowledge of an impor-
tance prioritization of the parameters. Sensitivity analysis may then represent
an attractive solution to deal with parameters importance ordering. The idea
is to identify non-influential parameters, via a sensitivity analysis of the fitness
function with respect to each parameter in the search space. A straightforward
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strategy for dimensionality reduction is then to ignore non-influential parameters
in a first optimisation stage, like in [7].

4 Experimental analysis

We propose a series of counterexamples for testing the limits of dimensionality
reduction based on GSA, in the same spirit as deceptive functions design [10, 9]:
global information collected through statistical analysis of some features (build-
ing blocks statistics in the case of deceptiveness “4 la Goldberg”) yields puzzling
information to the algorithm. Other interpretations may also stem from theo-
retical studies regarding the influence of local regularity features [13,15]: global
optima are located in very irregular areas, while attractive local optima are lo-
cated inside smooth areas. Statistical features are actually not able to capture
local irregularities and are thus yielding erroneous information to the algorithm
[14].

The strategy that is tested relies on the following statement (factor fixing
approach, see Section 2.2): a low total effect index indicates a non-influential
parameter that can be arbitrarily fixed with only few impact on the fitness func-
tion. To decide which parameters are non-influential, a threshold is arbitrarily
fixed (a low value in the range [0, 1]): parameters that have a total sensitivity
index below this threshold are considered non-influential.

4.1 Algorithms

Three EAs have been tested: (i) CMA-ES, (ii) an explicit population based EA,
implemented with the EASEA package! [4] and (iii) NSGA-II, a multi-objective
genetic algorithm. The following schemes have been considered for progressive
refinement:

— Approach 1 performs an optimisation of the influential parameters only. Non-
influential parameters are fixed to the middle of their interval of uncertainty.

— Approach 2 is based on [7]. Influential parameters are optimised in a first
stage, like in Approach 1, and then the best point is injected in the initial
population of a second optimisation, this time using all parameters.

CMA-ES. The Covariance Matriz Adaptation Evolution Strategy (CMA-ES)
[11] is a popular EA, widely used for many real-world optimisation problems.
It is known for its robustness and computational efficiency. For Approach 2,
CMA-ES is restarted as follows:

— The mean point is initialised to the best set of influential parameters found
during the first stage, while the values of non-influential parameters are set
to the middle of their interval of uncertainty.

— The standard deviation for each influential parameter is kept to the value
obtained at the last generation of the first stage, and the standard deviation
for non-influential parameters is set to 0.3 X (rangemaz — rangemin)-

! http://easea.unistra.fr
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EA. The second algorithm used in our tests is a classical EA, i.e. an explicit
population based EA, programmed in EASEA [4]. For Approach 2, the initial
population of the second stage is seeded with the content of the last generation
of the first stage. The non-influential parameters who were fixed at the middle
of their interval of uncertainty (or search space) are attributed a random value
in their range of uncertainty.

NSGA-II. The Nondominated Sorting Genetic Algorithm [6] is a Multiob-
jective evolutionary algorithm. This algorithm builds a set of non-dominated
solutions that approximates an optimal Pareto front. Thanks to a clever ranking
and to the use of a crowding distance, the population stabilises on an efficient
sampling of the Pareto front. Approach 2 with NSGA-II uses a similar setting
as above, for the EASEA-EA.

4.2 Counterexample I

[ Total effect indices
I First order indices

Total Sensitivity index value
o
o

Fig. 1. Counterezample I. (left) In the fitness landscape, the peak of fit; is at k2 =
0.0005. The line k2 = 0 is at the bottom of the peak. (right) Sensitivity analysis shows
that k1 is much more influential than k2.

The first counterexample is a function for which a non-influential parame-
ter remains important for the precise location of a global optimum. This can
be achieved with functions having simultaneously waves along some axes (corre-
sponding to influential “shapes”) and thin peaks along other axes. The projection
of the fitness function on the subspace of non-influential parameters then pro-
vides an averaged viewpoint on the fitness landscape that conceals high, thin
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peaks. We thus propose the following bi-dimensional function (Fig. 1):
ity (k1,k2) = g(k1,1.33,—0.5,0.3) + g(k2,7.98,0.0005, 0.05) + (k1)

k—b)?
where ¢ is a Gaussian: g(k,a,b,c) = a- exp(—%) and k1,k2 € [— 1; 1]
c
To make optimisation easier with respect to parameter k1, a small gradient,
h(k1) is added to the fitness:

1 1
h(kl) = {wools’fl + 10005 for k1 < 0.0005
—oo9o5 k1 + goger  elsewhere

A global sensitivity analysis, whose results are presented in Fig. 1 reads that
k1 is influential whereas k2 is not, since the total effect index of k2 is far lower
that the total effect index of k1.

EASEA-EA |[CMA-ES
Population size w = 200 10
Offsprings size A =180 -
Number of generations 35 632
Tournament selection Size =2 -
BLX-«a Crossover p=1. -
Log normal self adaptive mutation [p=1. 7 =2 -
Number of Runs 100 100

Table 1. Settings for the EAs used in Counterexample I

7 e Optimization on k1
s Optimization on k1 — Optimization on k2
m— Optimization on k2 6

@
¢ :
g4 &4
3 3
2 2
1 / j 1
0 0 2 3 4
0 1000 2000 3000 4000 5000 6000 7000 10 10 10 10
Number of individual evaluation Number of individual evaluations

Fig. 2. Counterexample I. Comparison of optimisation runs on k1 and k2, respectively,
using the EASEA-EA (left) and CMA-ES (right). Statistics on 100 runs are displayed
with median in bold and first- and third- quartile in thin lines of the same color.
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Approach 1 is tested: optimisation is run on parameter k1 only, and the result
is compared to an optimisation on parameter k2 only. Since k1 seems to bear all
influence whereas k2 appears to be non-influential, it is naively expected that
the optimisation on k1 will find a better value than the optimisation on k2. The
algorithms’ settings are reported in table 1. Statistics on 100 runs are displayed
in Fig. 2 for the EASEA-EA and CMA-ES algorithms. In this case, optimising
on the non-influential parameter is unexpectedly a better option than optimsing
on the supposedly most influential parameter.

4.3 Counterexample II

A restart strategy (Approach 2 of Section 4.1) may counterbalance the problems
presented above. We will see however that a restart strategy using GSA may
still be puzzled. This is the purpose of counterexample IT (Fig. 3).

-

[ Total effect indices
I First order indices

fitness
Sensitivity index value
o o o © o o o o
I S - - T

o
=

o

k2

Fig. 3. Counterezample II.(left) fits has two thin peaks, a very thin one corresponding
to a local optimum at (—0.5,0.5) and a larger one, global optimum, at (0.5, 0.5). (right)
Sensitivity analysis shows that the total effect index for k1 is much higher than for k2.

Fita(k1, k2) = g(k1,10.9,0.5,0.25) + g(k1, 11,—0.5,0.25) + g(k2,1,0.5,0.25)
+g2d(k1, k2, 100,0.5,0.01,0.5,0.01) + g2d(k1, k2, 50, —0.5,0.0025, 0.5, 0.0025)

k1,k2 € [— 1; 1], g and g2d are Gaussians:

(k— b
g(h,a,bc) = a- eop(—5 5
(K1 -0 (k2 - d)?
g2d(k1,k2,a,b,¢,d,e) = a - exp(—( 202 + 2¢2 )
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fits has a local optimum at (k1 = —0.5; k2 = 0.5), and a global optimum at
(k1 = 0.5;k2 = 0.5). A GSA on Counterexample II (See Fig. 3), shows that k1
can be considered as an influential parameter and k2 as a non-influential one.

A progressive refinement strategy (Approach 2) is compared to a plain opti-
misation (full search space) using a classical EA, with the settings reported in
Table 4.3. Over 100 runs, the full search always finds the global optimum whereas
the restart strategy (Approach 2) always get stuck on the local optimum (Fig.
4.3).

120

7
100 !5

80

Optimization on both parameters
Optimization on k1 only
Optimization on both parameters after restarting

P Population size © = 2000

£ Offsprings size A = 1800

Number of full search : 250

40 generations Approach 2 : 50

then 200

20 Tournament selection Size =2

BLX-a Crossover p=1.

% : s s . . Log normal self p=1.7=1+2
Number of individual evaluations % 10° adaptive mutation

Number of Runs 100

Fig.4. Counterexample II. Statistics of Table 2. Counterezample I1I. EA parameter
100 runs on Counterexample II with a setting, full search space and Approach 2.
classical EA.

This behaviour is due to the fact that the function is deceptive: when consid-
ering only k1 for optimisation, and fixing k2 to 0, the function has a maximum of
11.14 for k1 = —0.5 and a local maximum of 11.04 for k1 = 0.5. Thus, the first-
stage optimisation concentrates the population around the line k1 = —0.5, which
prevents the second stage from finding the global peak positioned at k1 = 0.5.

The same set of experiments has been performed using CMA-ES with two
settings: a first one letting the CMA-ES self-tune its population size, the sec-
ond one using a larger population size with the idea of artificially maintaining
diversity. The results are not reported here, but in both cases, we noticed that
Approach 2 was bringing deceiving information to the algorithm, and delayed
or even prevented convergence.

4.4 Counterexample III

The third counterexample is based on a multi-objective problem, to better shed
light on the potential limits of the method presented in [7]. A bi-objective min-
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imisation problem on a two parameters space has been derived using the fit,
function. A small offset has been put on parameter k1 for the second objective,
as follows:

fitonj, (k1,k2) = — fito(kl, k2)

Fitowy, (k1,k2) = — fity (k1 + 0.05, k2)

The theoretical Pareto front is located in the (k1,k2) parameter space, on
the segment [(0.45, 0.5); (0.5, 0.5)]. A sub-optimal Pareto front also exists on the
segment [(—0.55,0.5); (0.5,0.5)].

As expected, a GSA on Counterexample III provides similar information on
the behaviour of the two objective functions as for Counterexample II : k1 is
influential on both objectives whereas k2 is not (See Fig. 5).

[ Total effect indices| [ Total effect indices
I First order indices I First order indices

k2

Fig. 5. Counterezample III. Sensitivity analysis on objective 1 (left) and on objective
2 (right). For both objectives, the total effect index for k1 is much higher than for k2.

The restart strategy is compared to a classical approach, using the NSGA-IT
algorithm. The settings for NSGA-II are given in Table 4.4. The restart strategy
always ends up near the sub-optimal Pareto front, whereas the classic strategy
finds solutions near the optimal Pareto front. A typical result is displayed in Fig.
4.4.

For facilitating comparison, two performance metrics have been computed on
100 runs (see Fig. 7). The hypervolume indicator [24] computes the volume of the
dominated portion of the objective space. A high hypervolume value means that
the solutions are well spread along the objective space and/or are close to the
optimal Pareto front. The convergence indicator [5] computes a distance between
the current solution front and a predefined set of good solutions. Here, solutions
have been taken on the theoretical Pareto front. A low value corresponds to a
good approximation of the Pareto front.
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Pareto fronts with and without restarting

Solutions before restart
Solutions after restart

Solutions without re§tfa4

~ C
2 5
2 -11.
8 &0
b
5 -12
-80 -12.5
-13 -12 -1
-100
129
20 -100 -80 -60  -40  -20 0
Objective 1
Fig.6. Counterezample III. Typical

Pareto front obtained with a classical
NSGA-II and with the two steps restart

strategy.

09

0.8

Convergence
o
2

0.2

0.1

Optimization on

‘q both parameters
\ Optimization on
k1 only

Optimization on
both parameters
after restarting

N

Hypervolume

Population size|250

Number of full search : 250

generations Approach 2 :
50 then 200

Number of 100

Runs

Table 3. Settings for NSGA-II on

Counterexample III.

3000
2500
w—— Optimization on both parameters
2000 = Optimization on k1 only
Optimization on both parameters
after restarting
1500
1000
500

50 200

100 150
Number of individual evaluations

250

50 100 150 200

Number of individual evaluations

250

11

Fig.7. Counterezample III. Convergence metric (left) and hypervolume metric
(right) averaged on 100 runs using NSGA-II and a population size of 250.
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Fig. 8. Various sensitivity analyses on three sub-spaces for Counterexample I: param-
eters influences vary a lot !

5 Discussion

The counterexamples presented in Section 4 shed light on the fact that sensitiv-
ity analysis techniques may deliver misleading information to the optimisation
process. A possible explanation is that GSA is based on a statistical analysis
over a given parameter range. In this way it provides an averaged viewpoint on
each parameter, and it is clear that averaging may hide many fine details that
are important for optimisation purposes. Another problem is due to the fact
that the results of a GSA may drastically vary with the choice of the param-
eter range. It often happens that a parameter is influential on some subspace
and not on another. Fig 8 illustrates this effect for Counterexample I: when
k1,k2 € [f 1; 1], k1 is the parameter that has almost all the influence, whereas
k2 is almost non-influential. But on other areas, results can be the opposite:
for instance if k1,k2 € [ — 0.1;0.1], k1 is regarded as non-influential, while k2
becomes predominant.

The question of an efficient use of GSA inside an optimisation procedure is
raised: GSA is, in itself, extremely time consuming, and this cost has not been
taken into account in the previous experiments. It seems obvious that GSA,
based on a stochastic sampling of the full search space or of an area of it, con-
sumes a computational time that may sometimes be better spent by perform-
ing an optimisation process. Additionally, the averaged information provided
by GSA may hide some interesting irregular areas where global optima could
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be found. Finally, adaptive refinement methods, like Approach 2 presented in
this paper, or the one proposed in [7], need to identify a non-negligible subset
of non-influential parameters, which is not always the case, especially for com-
plex optimisation problems. More progressive strategies may be imagined, but
once again with all the risks tied to an assessment of the relative importance of
parameters averaged over a given area.

6 Conclusions

GSA is a technique able to deliver information on how the uncertainty in the
inputs of a system might influence uncertainty in its outputs. Since this data
is acquired through a stochastic sampling of the search space, different research
lines exploited the intuitive synergy between GSA and EAs, using the informa-
tion to reduce the dimensionality of the search space, or to choose the variables
on which to optimise first.

In this paper, we presented three case studies, specifically designed to pro-
vide deceiving information to sensitivity analysis used during an optimisation
process. As a result, stochastic optimisation biased by this information has been
experimentally proven unable to reach the global optimum. A simple progres-
sive refinement optimisation scheme based on parameter prioritisation such as
in [7] may work on some functions, but there is a risk of falling into a local
optimum, from which escaping might prove to be hard. Even if parameter pri-
oritisation might work better for multi-objective problems, thanks to a better
diversity preservation mechanism necessary for a correct sampling of Pareto
fronts, a multi-objective counterexample is still rather easy to design. This was
the purpose of counterexample III.

An interesting point for further developments could be to determine in which
cases GSA is beneficial. From this study we can conjecture that regularity of the
fitness function may play an important role. If global sensitivity analysis has been
proven to be puzzling to optimisation in some cases, local sensitivity analysis
however remains interesting.Sobol indices computed locally for instance may be
useful for tuning mutations, in the same spirit as what has been developed in
[14], but with an associated computational cost to be taken into account.

References

1. Barichard, V., Hao, J.K.: Resolution d’un probleme d’analyse de sensibilite par
un algorithme d’optimisation multiobjectif. In: 5eme conference francophone de
Modelisation et SIMulation (MOSIM 2004), Nantes. pp. 59-66 (2004)

2. Beyer, H.G., Sendhoff, B.: Robust optimization—a comprehensive survey. Computer
methods in applied mechanics and engineering 196(33), 3190-3218 (2007)

3. Chabin, T., Tonda, A., Lutton, E.: Is global sensitivity analysis useful to evolution-
ary computation? In: Proceedings of the Companion Publication of the 2015 on
Genetic and Evolutionary Computation Conference. pp. 1365-1366. ACM (2015)

4. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it easea. In: Parallel
Problem Solving from Nature PPSN VI. pp. 891-901. Springer (2000)

63



14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective

optimizations. In: Proceedings of the Fourth Asia-Pacific Conference on Sim-
ulated Evolution and Learning (SEAL’02),(Singapore). pp. 13-20. Proceedings
of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL’02),(Singapore) (2002)

. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on 6(2),
182-197 (2002)

. Fu, G., Kapelan, Z., Reed, P.: Reducing the complexity of multiobjective water

distribution system optimization through global sensitivity analysis. Journal of
Water Resources Planning and Management 138(3), 196-207 (2011)

. Goldberg, D., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,

and first results. Complex Systems 3(5), 493-530 (1989)

. Goldberg, D.: Genetic algorithms and walsh fuctions: II. Deception and its analysis.

Complex Systems 3(2), 153-171 (April 1989)

Goldberg, D.: Genetic algorithms and walsh functions: I. A gentle introduction.
Complex Systems 3(2), 129-152 (April 1989)

Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation 9(2), 159-195 (2001)

Kargupta, H.: The gene expression messy genetic algorithm. In: International Con-
ference on Evolutionary Computation. pp. 814-819 (1996)

Leblanc, B., Lutton, E.: Bitwise regularity and ga-hardness. In: ICEC 98, May 5-9,
Anchorage, Alaska (1998)

Lutton, E., Lévy Véhel, J.: Pointwise regularity of fitness landscapes and the per-
formance of a simple es. In: CEC’06. Vancouver, Canada (July, 16-21 2006)
Lutton, E., Véhel, J.L.: Hélder functions and deception of genetic algorithms. IEEE
transactions on Evolutionary computation 2(2), 56-72 (July 1998)

Miiller, C., Paul, G., Sbalzarini, I.: Sensitivities for free: Cma-es based sensitivity
analysis. Tech. rep., ETH Zurich (2011)

Paul, G., Miiller, C., Sbalzarini, I.: Sensitivity analysis from evolutionary algorithm
search paths. Tech. rep., ETH Zurich (2011)

Rajeev, S., Krishnamoorthy, C.: Genetic algorithms-based methodologies for design
optimization of trusses. Journal of Structural Engineering 123(3), 350-358 (1997)
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., Tarantola, S.: Global Sensitivity analysis, The Primer. John Wiley
& Sons (2008)

Saltelli, A., Annoni, P.: How to avoid a perfunctory sensitivity analysis. Environ-
mental Modelling & Software 25(12), 1508-1517 (2010)

Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates. Mathematics and computers in simulation 55(1-3), 271-280
(2001)

Stonedahl, F., Wilensky, U.: Evolutionary robustness checking in the artificial
anasazi model. In: AAAT Fall Symposium: Complex Adaptive Systems (2010)
Tang, Y., Reed, P., Wagener, T., Van Werkhoven, K., et al.: Comparing sensitivity
analysis methods to advance lumped watershed model identification and evalua-
tion. Hydrology and Earth System Sciences Discussions 11(2), 793-817 (2007)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algo-
rithms—a comparative case study. In: Parallel problem solving from na-
ture—PPSN V. pp. 292-301. Springer (1998)

64



65



Quasi-random numbers improve the CMA-ES on
the BBOB testbed

Olivier Teytaud

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud),
bat 490 Univ. Paris-Sud 91405 Orsay, France, teytaud@Iri.fr

Abstract. Pseudo-random numbers are usually a good enough ap-
proximation of random numbers in evolutionary algorithms. But quasi-
random numbers follow a different idea, namely they are aimed at being
more regularly distributed than random points. It has been pointed out
in earlier papers that quasi-random points provide a significant improve-
ment in evolutionary optimization. In this paper, we experiment quasi-
random mutations on a well known test case, namely the Coco/Bbob
test case. We also include experiments on translated or rescaled versions
of BBOB, on which we get similar improvements.

1 Introduction

Monte Carlo is a classical method for computing approximate integrals. They
can also be used directly for optimization; this is the simple random search
algorithm. Evolutionary algorithms can be viewed as an improved form of ran-
dom search, adaptively modifying the probability distribution in order to fo-
cus on the optimum. While Monte Carlo integration has been upgraded to
Quasi Monte Carlo (also known as quasi-random), most evolution strategies
use pseudo-random numbers, aimed at approximating random numbers, and
not Quasi Monte Carlo, in spite of a few promising works in that direction. This
might be due to lack of extensive experimental results on some classical testbeds;
the purpose of this paper is to do this extensive experiment of quasi-random mu-
tations in the Bbob/Coco benchmark.

In this paper we recall the state of the art in the use of quasi Monte Carlo
in evolution strategies (Section 2), and then experiment an existing quasi Monte
Carlo evolutionary algorithm on the Bbob/Coco framework.

2 Derandomization in evolution strategies

Evolution strategies[1] have been “derandomized” in several manners: use of
covariance matrix[2, 3], and use of quasi-random points. We here consider the
latter. It can be considered independently of the first and we will indeed use per-
form experiments in an algorithm which includes covariance matrix adaptation.

Low-dispersion or quasi-random points have been used for derandomizing the
random search[4-6], or evolutionary algorithms[7] or other randomized optimiza-
tion algorithms[8]. We here refer mainly to [9,10], using quasi-random points
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for derandomizing the mutations in the CMA-ES algorithm[11]. The quasi-
randomized version of CMA is termed DCMA, which stands for derandomized-
CMA.

Some important elements about quasi-random points follow. Computational
cost is not a good reason for discarding quasi-random sequences. The compu-
tational cost for generating quasi-random points is negligible and indeed of-
ten smaller than for classical pseudo-random numbers[12, 13]. Quasi-random se-
quences are different from pseudo-random sequences. Quasi-random numbers
are not a special case of pseudo-random numbers. Pseudo-random sequences
are aimed at imitating random sequences, whereas quasi-random sequences are
aimed at doing better, thanks to a better uniformity. Additionally, modern quasi-
random sequences have a random part[14]. Quasi-random points have low dis-
crepancy, decreasing as the inverse of the number of points (within logarithmic
factors), whereas pseudo-random numbers and random numbers, by design, have
discrepancy decreasing as the inverse of the square root of the number of points.
Pseudo-random numbers are an approximation of random numbers, whereas
quasi-random numbers are qualitatively different. The weaknesses of old quasi-
random sequences (such as non-scrambled Halton sequences), which were often
worse than random sequences in high dimension, have been overcome thanks to
randomized quasi-random sequences; these sequences have the good properties
of quasi-Monte Carlo methods and are at least as performant as Monte Carlo
methods in most (if not all) cases[15-19].

3 Experimental results

We follow the experimental setup proposed in “exampleexperiment.m” provided
in the Bbob/Coco downloads; a comment in the file states that the number
of function evaluations should be increased, so we increase to 100 x D with D
the dimension for the strict Bbob/Coco setting in Section 3.1, which will be
extended to 2000D in Section 3.3. We will also check translated or rescaled
versions of Bbob. All experiments are performed with initial point (0,0, ...,0)
and initial step-size 1. The version of CMA-ES is the Matlab/Octave one as of
the time of submission. All quasi-random numbers are obtained by the scrambled
Halton method.

3.1 Experimental results in the Bbob/Coco setting

In this section, we produce results using the Bbob/Coco framework, without
any change except the increase of the number of evaluations to 100 x D (we
increased this because it is recommended in the Bbob/Coco sample file to do
s0). The Bbob/Coco framework has been used in several conferences.Results are
presented in Fig. 7 (frequency of success depending on the number of evaluations,
for different precision levels). Fig. 1 presents the scatter plots, i.e. the x-axis is
the computation time for reaching some precision for the default CMA whereas
the y-axis is the computation time for reaching the same precision for DCMA. All
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graphs are obtained by Bbob/Coco automatically, so that there is no parameter
choice by ourselves. All experiments use BBOB V13.09.

3.2 Experiments in the parallel setting

We reproduce the results above in the parallel setting. We will assume here that
we consider a problem in which the computational cost is mainly in the fitness
evaluations, and that function evaluations have an approximately constant com-
putational cost, so that increasing the population size is a natural solution for
parallelization: the population size is the number of processors.

We set the population size to 20 x D, where D is the dimension, and do not
modify anything else in the Bbob/Coco framework. Results are presented in Fig.
2 (frequency of approximate solving on the y-axis for the number of evaluation
given on the x-axis).
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Fig. 1. Experimental results (scatterplots) for the default Bbob framework. For each
graph, corresponding to one function from fl to f24 in Bbob/Coco, the x-axis is the
run length for the default CMA in log-10 scale, whereas the y-axis is the run length in
log-10 scale for the quasi-randomized version, i.e. DCMA. CMA is better than DCMA
for function f18, in the sense that there are more points above the diagonal than below.

DCMA is better for the 22 other functions.
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Fig. 2. Experiments on Bbob with popu-
lation size forced to a larger value 20 x D
where D is the dimension. Success rates
for different number of function evalua-
tions as in Fig. 7. Left: results with the
default CMA. Right: results with quasi-
randomization (DCMA). Results are usu-
ally better for DCMA, but the difference
is smaller than with the standard popula-
tion size of CMA.
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as population) and with larger numbers
of function evaluations (10000D). Left: re-
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with quasi-randomization. Results similar
to the standard case.
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3.3 Experiments with larger numbers of iterations

We come back to the original Bbob/Coco setting of Section 3.1, but with 2000x D
function evaluations in dimension D. Results are presented in Fig. 3 and still
show a superiority of DCMA but with a smaller difference. Detailed results show
a strong superiority for f12, f15, f16, f17, {18, 19, {23, {24.

3.4 Experiments with large population size and large numbers of
iterations

We come back to the Bbob/Coco setting of Section 3.2, i.e. population size equal
to 20D where D is the dimension, but with 10000 x D function evaluations
in dimension D. Results are presented in Fig. 4 and Fig. 8 and still show a
superiority of DCMA, though not for all functions.

4 Experiments with modified BBOB

In this section, we rescale the BBOB testbed. As in the original experiments
(Section 3.1), we use 100D function evaluations. Instead of working on f(zx), we
work on f(x/1000). Results are presented in Fig. 5 and 9. The superiority of
DCMA over CMA is bigger, suggesting that derandomized mutations improve
the robustness w.r.t an imperfect initialization (guessing the initial step-size is
not that easy in real situations) leads to a roughly linear landscape.

5 Experiments with another modified BBOB

In this section, we translate the BBOB testbed. As in the original experiments
(Section 3.1), we use 100D function evaluations. Instead of working on f(z), we
work on f(x 4+ 7) (47 is added coordinate-wise, i.e. all d decision variables are
shifted in dimension d). Results are presented in Fig. 6 and 10. The improvement
by DCMA over CMA is bigger than in the original BBOB.

6 Conclusion

The derandomization proposed in [10] basically works. There are settings
in which the difference is large, and settings in which the effect of quasi-
randomization is minor; but it is rarely detrimental. The contribution of this
paper are (i) confirming this superiority on the BBOB testbed (ii) efficiency of
DCMA compared to CMA is preserved with large population sizes (iii) it is pre-
served in all Bbob dimensions (v) we confirm that the improvement is better in
multimodal settings; this is consistent with [20].

We perturbated the BBOB testcase, just by changing the scale by a factor
1000, or by translating functions by +7. Results are essentially preserved. BBOB
does not provide confidence intervals. This is deeply rooted in BBOB: there is
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a finite set of functions, and therefore overfitting is always possible, a trivial
algorithm successively sampling the finite set of optima of BBOB instances for
the considered dimension would have excellent performance. Nonetheless, we
reproduced the results many times, and always got the same result, including
translations and rescaling. All tested frameworks have been presented.

We considered results with respect to the number of fitness evaluations, not
computation time; this is the standard Coco/Bbob methodology. The compu-
tational cost of the quasi-random part is negligible, indeed the computational
complexity of quasi-random numbers is often less than the one of pseudo-random
numbers. We decided to run experiments on the Bbob/Coco framework without
any adaptation so that at least the framework is not chosen specifically for the
experiments and results are neutral. There was no tuning at all and presented
results are the results of the first set of runs in each setting.

We now discussion limitations of the present paper. In the present work,
we just validated the derandomization of mutations by quasi-random numbers.
Other derandomizations, based on symmetries as the one proposed in [21], might
provide additional improvements; these two derandomizations can be combined.
In the present paper we combine quasi-Monte Carlo and Covariance Matrix
Adaptation, we could have symmetrized sampling combined with quasi-Monte
Carlo and Covariance Matrix Adaptation, all together. Our experiments are
performed with the scrambled Halton sequence. We do not claim that other, in
particular older Quasi-Monte Carlo sequences would be as efficient. It is well
known that old Quasi Monte Carlo sequences were not that good, in particular
in high dimension[18]. There are now many good quasi-random sequences in the
literature. Maybe other quasi-random sequences would provide better results.

The experiments were performed without any modification of CMA other
than adding the quasi-random part, i.e. replacing arz = random gaussian by
arz = quasi random gaussian (where arz is the notation in CMA for the mu-
tation before rescaling and applying the covariance transformation). It is likely
that the optimal parameters for the covariance update and for the step-size up-
date are different from the optimal parameters for the original CMA. Therefore
there is likely margin for improving the results of the DCMA algorithm, which
is left as further work.

Quasi-random, or low-dispersion, can be used also for the restarts. This is
the purpose of other published works. We did not include quasi-random restarts
in order to separate both effects. Still, the performance improvement might be
due to a better spreading of the initialization over the domain. We conjecture
that the improvement related to quasi-random restarts will be larger than the
one with quasi-random mutations - the purpose of this paper is basically that
we can also include quasi-randomization in mutations.
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Abstract. In this paper, we assess the performances of Differential Evo-
lution on real-world clustering problems. To improve our results, we in-
troduce Progressive Differential Evolution, a small modification of Differ-
ential Evolution which aims at optimizing a small number of parameters
(eg. one cluster) at the beginning, and incrementally increase the number
of optimized parameters.

1 Introduction

While many benchmarks used in the optimisation community to evaluate algo-
rithms are based on purely artificial functions such as [20] and [10], it can only
be the first step in what ultimately is aimed at solving real world problems.
Some recent initiatives went in that direction (see [8] for example), proposing
new ways to assess the performances of optimisation algorithms.

In this paper, by comparing our results on one such benchmark, we (i) show
that the Differential Evolution algorithm is very efficient on clustering prob-
lems and (ii) propose Progressive Differential Evolution, which starts with a low
number of parameters to optimise and gradually increases it.

Section 2 describes the benchmark we used to compare our results to other
algorithms and Section 3 validates our approach. Section 4 recalls the Differ-
ential Evolution algorithm and the “DE/curr-to-best/1” variant we used while
Section 5 introduces Progressive Differential Evolution. In Section 6 we compare
our results to the state of the art.

2 Continuous Real-World Representative benchmark

Most of the existing testbeds used to evaluate optimisation algorithm compare
their performances on artificial functions, such as the sphere, the ellipsoid or the
Rosenbrock function to cite the most notable ones. With the improvements of the
algorithms, more complex functions were introduced with some specific proper-
ties such as rotation, non separability, multimodality and so on, but ultimately,
most testbeds are completely artificial.

While this is by no mean uninteresting, the ultimate goal in optimisation is
to solve real world problems. The gap between artificial functions - as complex
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as they are - to real world issues seems too large to directly apply what we know.
As such, new testbeds, with some real world properties are advisable.

One of such propositions comes from [7] and revolves around clustering prob-
lems that have interesting properties to evaluate optimisation algorithms: chal-
lenging, scalable, easy to understand and implement, and most of all, their data
can - and should - come from real world examples. Each cluster is used as a
vector of coordinates in the parameters’ space of data, which allows us to use
optimisation algorithms on those problems.

The three problems used here are the Iris [6], the Ruspini [15] and the German
Town [18] datasets, all of them widely used in the clustering community to
evaluate the performances of their own algorithms, and rooted in the real world.
More importantly, [12] computed the global optimum for those datasets from two
to ten clusters, which allows us to assess the performances of the algorithms. The
German Town points are defined in 3D, the Iris ones in 4D and for Ruspini it is
in 2D.

Along with a k-means clustering algorithm, [7] studied the performances of
three black-box algorithms: CMA-ES [9] (one with standard population size, one
with an increased population), Nelder-Mead [13] and Random-Search. One of the
conclusions is that even if the k-means algorithm converges very quickly, it is
often beaten by CMA-ES (with increased population size) in term of quality of
the solution found. Thus, complete black-box algorithms are able to outperform
problem specific ones.

3 Implementation validation

In order to compare results obtained on our platform using Evolving Objects
(see [11]), we ran the benchmark on two CMA-ES with the same configuration
as [7]: one has default parameters, one has a population size of 4 = 50 and
A = 100. In both cases, we stopped a run when fpesr < f* + % (ie. the
optimum is reached), when the best fitness stagnated for too long or when the
allocated budget was consumed. This budget was set to 2e5 function evaluations
(all budgets in this paper are expressed in terms of function evaluations).

As can be seen in Table 1, the mean fitnesses we were able to obtain are
comparable to the ones reported in [7]: sometimes better, sometimes worse, but
never by far (except in high dimension where the results are degraded, probably
due to different parameters). This allows us to validate our implementation, and
serves as a baseline for the rest of our work.

In the original paper, the number of function evaluations was reported with
the mean fitnesses. The given explanation is that the main focus of the exercise
being the fitness - and not so much failures or successes - the required number of
function evaluations to get a result is not that important: each algorithm should
have the time - the budget - to reach the optimum or at least converge.

While this is perfectly valid, we don’t feel comfortable to do so as it weakens
the comparison between algorithms. Instead of reporting the mean number of
function evaluations used, we will prefer the SP1 measure as defined in [1] :

81



Progressive Differential Evolution on Clustering Real World Problems 3
DIk J+ CMA-ES(50,100) |CMA-ES(50,100) SP1 CMA-ES CMA-ES SP1
G02]6.02546e11([6.025472e11 (2.8e-04)| 8.3400e03 (6.4e02) || 1.172558e12 (7.6e11) |4.8798e04 (3.3e04)
03|2.94506e11|| 4.486461ell (1.5e1l) | 4.2083e04 (2.6e04) 8.196432e11 (1.2e12) 00
04/1.04474e11|| 3.362127el11 (1.4ell) | 3.9970e05 (1.8e05) || 7.629370ell (4.7ell) 00
05]5.97615e10|| 2.049802e11 (1.4ell) | 6.8410e05 (2.0e05) || 7.488858e11 (1.2¢12) 00
06]3.59085e10|| 1.585765e11 (1.5ell) oo 8.818792¢l1 (6.3e11) 00
07|2.19832¢10|| 1.051648¢e11 (1.1ell) oo 6.463187¢ll (7.5e11) oo
08]1.3385410/| 1.068587e11 (9.3¢10) oo 7.005948el1 (7.1el1) o0
09|7.80442€09|| 2.780667¢11 (3.1e11) o0 1.003192e12 (9.7ell) [eS]
10(6.44647e09|| 5.869352e11 (5.2e11) oo 7.677317ell (6.5e11) oo
1|02] 1.52348¢2 ||1.523480e02 (6.4e-14)| 1.8344e04 (5.0e02) |[1.523542¢02 (3.0e-03) 00
03|7.88514e01||7.885144¢€01 (2.5e-14)| 7.2048e04 (2.2e03) || 1.279512e02 (1.2¢02) oo
045.72285€01|| 5.836730e01 (3.9¢00) 0 9.728522e01 (3.5e01) 0o
05|4.64462e01|| 4.766177e01 (1.7€00) oo 1.330878e02 (1.3e02) oo
06/3.90400e01|| 4.149195e01 (2.9¢00) oo 1.292478e02 (1.3e02) oo
07]3.42982¢01 | 4.037920e01 (3.5¢00) oo 7.892632¢e01 (4.5e01) 00
08]2.99889¢01 || 3.739813e01 (4.2e00) oo 7.750688¢e01 (5.4e01) 00
09|2.77861e01|| 3.831817e01 (5.3¢00) oo 8.018775e01 (7.6e01) oo
10]2.58341e01 || 5.653196e01 (6.9¢01) 00 9.553900e01 (1.0e02) 00
R |02]8.93378e04|8.933783e04 (5.0e-12)| 6.8260e03 (1.1e03) ||8.933783e04 (3.1e-11)|3.5903e04 (5.0e03)
03]5.10635¢04|| 5.110393¢04 (4.6e01) | 2.0453e04 (5.3¢03) || 5.473043e04 (9.8€03) 00
04]1.28811e04|| 1.288105e¢04 (0.0e00) oo 2.046652e04 (1.5e04) 00
05|1.01267e04|| 1.032449¢04 (5.0e02) oo 3.209521e04 (1.4e04) oo
06/8.57541¢03|| 8.919118¢03 (5.1¢02) | 2.5490¢05 (1.7¢04) || 2.605724¢04 (1.3¢04) 00
07|7.12620e03|| 7.634386e03 (4.4€02) | 7.7641e05 (4.9e04) || 2.309534e04 (6.1e03) e
08/6.14964€03|| 6.635902e03 (3.9¢02) oo 2.061007e04 (5.2e03) oo
09]5.18165e03|| 7.464273e03 (3.6e03) oo 1.906988e04 (5.3e03) 00
10(4.44628¢03|| 1.095691e04 (5.0e03) oo 1.696298e04 (5.6e03) 00

Table 1: Average fitness results and SP1 measure (mean and standard devia-
tion) for CMA-ES and CMA-ES(50,100). An SP1 measure of co means that the
optimum could not be reached for any of the 50 runs. Results are give for the
German Town (G), Iris (I) and Ruspini (R) datasets for all values of k.

5P1 = EL) where E(T5) is the expected number of function evaluations used

in a successful run and ps is the probability to get a success for a given run.

This measure has some disadvantages (eg. when the success probability is
0), but it allows a more accurate comparison between algorithms, in particular
when using restarts. In such a way, two possible strategies (aiming for a 100%
success rate no matter the cost or allowing restarts if the solution is not quickly
found) are both possible and their performances can be compared without bias
one way or another.

4 Differential Evolution

While the first work on this clustering benchmark obviously did not try to com-
pare each and every possible optimisation algorithm, we felt that given the speci-
fities of the problem, Differential Evolution (DE) [19] could perform quite well.
This feeling is substantiated by [4] in which DE is said to perform very well on
a lot of testbeds.

Built around crossovers, the DE algorithm replaces part of a given individual
with two or more others. Many different variants of DE exist, each one defining
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the crossovers rule. The one we chose was “DE/curr-to-best/1”. For a given
generation, we then have:

DE/curr-to-best/1: U(0, 1) is a random uniformly distributed number between 0 and
1, CR is the crossover rate parameter, f1 and f2 are two real numbers, Best is the best
individual in the generation, and f is the evaluation function, n is the dimension of a
point in the given dataset.
for each individual I do
Y1
Randomly choose A and B, two individuals distinct from I and Best
Randomly select an index R € {1,...,n}
for alli € {1,...,n} do
if i=Ror U(0,1) < CR then
Y (i) < I(2) + f1(A(%) — B(2)) + f2(Best(i) — I(3))
end if
end for
if f(Y) < f(I) then
Replace I by Y
end if
end for

The only difference from “DE/best/1” is thus the update formula, which is
Y (i) < Best(i) + f1(A(%) — B(1)).

In the spirit of [7], we didn’t try to tune the algorithm’s parameters. Instead,
in the absence of a standard recommendation, we set CR = 0.5, f; = fo = 0.8
for a population size of 30. The initialisation points were randomly drawn with
a normal distribution of mean the average of the range of the variables, with a
standard deviation of a third of that average. We used here the same stopping
criteria as with CMA-ES in our previous experiment.

5 Progressive Differential Evolution

In some of our first trials, when studying the reasons for failures to reach the
optimum, we reached the conclusion that in a third of the failed runs, this failure
was due to falling in a local optimum. As can be seen on Figure 1 with a 3e4
budget, in most cases the failures to reach the optimum are simply due to a
lack of budget: the clusters found are not exactly at the optimum but centered
around them. In fact, by increasing the budget, we saw that indeed, those points
went to the optimum.

In the second case however, we can see that the points found are symmetri-
cally opposed to the optimum solution, one cluster at the top, two at the bottom.
This configuration on the Ruspini problem with k& = 3 gives a fitness of ~ 51155,
which is only slightly worse than the optimum of & 51063. As such, there is only
a very small probability that any mutation would get to the real optimum close
enough to improve the solution.
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Fig. 1: Clusters position on failure cases, Ruspini dataset with k = 3

In order to avoid this, we introduced “Progressive Widening”, known as the
Sieves Method [16] in statistics. The basic idea is to start optimising a small
number of clusters, and to increase that number at some point in the process:

PDE: kyyqq is the desired number of clusters, N is the dimensionality of each point, R
determines the number of generations to do with k clusters
Initialise population
k+1
while not stop do
for i =0 to R do
Run one generation of DE on the k- N first parameters
end for
k <+ mzn(kz + 1, kmar)
end while

Here, we chose to use R = 100, which means that every one hundred genera-
tion, we increase the number of parameters to optimise until we reach n - k4.

Of course, the fact that we optimise k clusters doesn’t mean that the others
“disappear”: they are still taken into account in the evaluation, but don’t move
from their initial position, which is the center of the search space. This means
that even when training k clusters, there is always one more that can be selected
as the nearest from a given point. While we could have completely removed them
from the evaluation, we felt that this would have reduced the black-box context
of the problem.

In fact, one could argue that we are only able to use Progressive Widening
by weakening the black-box setting of the problem. Indeed, since we know the

84



Vincent Berthier

dimension of the problem, we know that to add a cluster we have to add N
parameters. We don’t think this is an issue however, this knowledge being as
much part of the specification of the problem as the definition of the search

space.

6 Results

6.1 DE vs CMA-ES
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Table 2: Average fitness results and SP1 measure (mean and standard deviation)
for DE and PDE. An SP1 measure of oo means that the optimum could not be
reach for any of the 50 runs. Results are give for the German Town (G), Iris (I)
and Ruspini (R) datasets for all values of k.

The results we obtained with DE shown in Table 2 and Figure 3 were very
good, often better - sometimes by far - than CMA-ES(50,100). The first striking
result is that DE more consistently reaches the optimum solution: in only five
cases (three on the German Town dataset, two on the Ruspini dataset) DE was
not able to reach the optimum at least once in the 50 runs reported here.

As such, it comes as no surprise that the average fitness obtained by DE
after 50 runs was improved in almost all cases (except on the Iris dataset when
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k < 6 and on the Ruspini dataset with k£ = 3). While this improvement is not
necessarily ground breaking on the Ruspini dataset for example, it is much more
important on the German Town problem (see Figure 3a).

6.2 DE vs PDE

The effects of the Progressive Widening on DE were twofold: first, it globally
improved the average fitness across the board: in all but one trial (Ruspini with
k = 7), the mean fitness and associated standard deviation were better with
Progressive Widening than without. Once more, this is most notable on the
German Town problem. Furthermore, in only one case now (Iris dataset with
k = 10) is CMA-ES the best: on all other cases, PDE gets better results.

The second effect (shown in Table 3) was the one we expected: the success
rate improved, we find the optimum more often. Most notably, with £k = 3 on
the Ruspini dataset, we went up from a 62% success rate to a full 100%: we no
longer fall in the local optimum reported in Figure 1, which was our goal when
adding Progressive Widening to DE.

In five cases though the rates went down but only in two cases was this
decrease important: from 58% to 20% on the Ruspini dataset with k = 7 (which
is also the only case where the mean fitness obtained by DE is better than PDE)
and from 32% to 6% still on the Ruspini dataset but with k& = 10. Interestingly
here, while the success rate decreased by almost 30%, the mean fitness obtained
by PDE is still better than the one from DE.

In fact thanks to this, we can see that while the Progressive Widening works
very well in most instances in order to avoid a local minimum, in some rare
cases it is exactly the opposite, as we can see on Ruspini with £ = 10. While
the solution found is often very good - there is not a huge difference between
DE and PDE mean fitness there - by plotting the proposed solution we see that
when PDE fails to reach the optimum and stagnates, it is because it fell in a
local minimum.

6.3 The cost of PDE

Given the fact that the budget and stopping criteria are the same for DE and
PDE, the SP1 measures reported in Table 2 mostly reflect the differences in suc-
cess rate we saw previously. In the few cases were both algorithm have (almost)
the same success rate, we can see that the SP1 measure is higher (or worse) for
PDE than for DE : the introduction of Progressive Widening is not without cost.
This is even more clearly illustrated in Figure 2, where some statistics on the
fitnesses of 50 runs of DE and PDE are plotted. On the first few evaluations, PDE
performs two orders of magnitude worse than DE, still one order of magnitude
worse after 5e3 evaluations, and it is not until at least 1.5e4 evaluations that
PDE performs at least as well as DE. While this is to be expected since until
then not all clusters are optimised, it is still something to take into account.
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(a) German Town dataset (b) Iris dataset

k |CMA(50,100) | DE|PDE k |CMA(50,100) | DE|PDE
02 100 100| 100 02 100 100| 100
03 48 98 | 100 03 100 86 | 84
04 10 76 | 100 04 0 56 | 100
05 18 741 98 05 0 28 | 28
06 0 74| 88 06 0 32| 50
07 0 38| 74 07 0 4] 2
08 0 0| 0 08 0 6| 8
09 0 (U 09 0 41 8
10 0 0 8 10 0 2 2

(c) Ruspini dataset

k |CMA(50,100) | DE|PDE
02 100 100 100
03 56 62| 100
04 0 0| 2
05 0 0| 0
06 24 46 | 36
07 16 58 | 20
08 0 42| 64
09 0 32| 52
10 0 32| 6

Table 3: Success rate for CMA(50,100), DE and PDE

7 Conclusion

DE performs very well on clustering problems, even when compared to clustering
algorithms or CMA-ES, the current state of the art on this benchmark. This, by
itself, is a very impressive result.

Our proposed variant of DE, PDE, gets even better results in most cases
illustrating the good impact the concept of Progressive Widening can have on a
black box algorithm.

In addition, we propose a baseline for the SP1 measure that will allow more
robust comparisons of algorithms on this benchmark in the future.

8 Further work

While still following the spirit of the original paper by not tuning the algorithms
parameters, there are still many possibilities to try and improve the results. Some
ways to do so include other mutations rules for DE (DE/rand/1, DE/best/1,
etc.), using Adaptive Differential Evolution, or other variants.
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107 Evolution of fitness for DE and PDE (Ruspini dataset with & = 6)
— PDE Min
— PDE Max
PDE mean
—— PDE median
10 === DE Min
- DE Max
DE Mean
- DE Median

Fitness

) 5000 10000 15000 20000 25000 30000
Number of function evaluations

Fig. 2: Fitness statistics evolution on the Ruspini dataset with & = 6 with DE
and PDE. The Progressive Widening has a clear cost at the beginning of the
optimisation process.

Of course, another way could be to use the progressive strategy on other
algorithms when possible: for algorithms with covariance matrices such as CMA-
ES, CMSA [3] or even the self-adaptive with covariance algorithm [14] such a
change is not trivial. But for others like Particle Swarm Optimisation [5,17] or
the other members of the Self-Adaptive family [2] (isotropic or anisotropic, 141,
etc.) this is quite straightforward.

The most interesting improvements could be done on the Progressive Widen-
ing concept. For example, knowing why in some instances it is more prone to
fall in a local minimum would be interesting.

Furthermore, we have seen that the Progressive Widening is not without cost.
To lessen that cost, instead of adding clusters (or parameters in the general case)
at fixed timesteps we could design a rule that dynamically adds them when
the fitness is reasonably stable. An intermediate step might be to add those
parameters after an increasing number of timesteps (evaluations or generations)
with a logarithmic rule for example, such that the more parameters are currently
optimised, the more time is spent on them before adding more.
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Abstract. In Distributed Adaptive Metaheuristics Selection (DAMS)
methods, each computation node can select, at run-time during the op-
timization process, one metaheuristic to be executed from a portfolio of
available metaheuristics. Within the DAMS framework, we investigate
different metaheuristic selection strategies which enable to choose locally
at each time step a metaheuristic to execute. We conduct a throughout
experimental analysis in order to better understand the accuracy and
the behavior of the proposed strategies, as well as their relative perfor-
mance. In particular, we analyze the impact of sharing metaheuristic
performance information between compute nodes and the relative effect
on each of the considered distributed selection strategies depending on
communication topology. Our experimental analysis is performed on the
simple one Max problem, for which the best metaheuristics that should
be executed at run-time are known, as well as on the more sophisticated
NK-landscapes for which non-linearity can be tuned.

1 Introduction

1.1 Motives

A challenging question accruing in practice when solving an optimization prob-
lem using evolution algorithms or metaheuristics is the choice of the relevant
algorithm, or at least the choice of the parameters of a given algorithm. This
choice should typically be guided by the specific features of the tackled problem,
even if in a black-box context, those features could be hard to extract.

In this context, a technique for algorithm selection consists in selecting the
‘best’ algorithm to solve a given problem. The original framework of algorithm
selection has been proposed by Rice [12]: First some problem features are ex-
tracted. According to those features, one algorithm is selected from a set of
available algorithms. Then the performance of the selected algorithm is mea-
sured on the problem. With the increasing number of available algorithms, and
the number of components that can take part in good algorithms, this framework
has become more and more popular. Instead of developing a new optimization
algorithm, the ”design” of relevant algorithm turns out to the identification of
the most suitable one or the most suitable components (See [10] for a recent
review on algorithm selection).
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Similarly, the performance of metaheuristics heavily depends on the correct
choice of their parameters. Indeed, algorithm selection is related to parameter
setting, in the sense that parameters setting can be associated to a specific
algorithm, and vice-versa. Eiben et al. [4] propose to classify parameter setting
methods into two classes. In off-line tuning methods, an algorithm is selected
before applying it effectively. Some tuning methods use performance prediction
methods based on problem features such as in SATzilla [17], and some others are
based on searching in the set of possible algorithm or configurations such as in
racing technics [11]. In on-line control methods, the algorithm is selected during
the optimization process. At each round, an algorithm is selected from a portfolio
of algorithms according to the performance observed in previous rounds. On-line
algorithm selection can be modeled as a (dynamic) multi-armed bandit problem:
each arm is an optimization algorithm, the reward reflects the quality of solutions
produced by the algorithm, and the objective is to select the arms during the
optimization process in order to maximize the quality of the final solution. In this
context, the so-called Adaptive Operator Selection methods aims at selecting
sequentially an operator at each time step. To cite a few, Thierens [14] uses
probability matching and adaptive pursuit technics to perform the selection,
and Fialho et al. [6] propose different selection strategies based on the Upper
Confidence Bounds strategy with dynamics restart techniques. For continuous
optimization, on-line portfolio techniques have also been recently investigated
in [1] using specific reward functions specific to the continuous case.

In this paper, we extend the so-called Distributed Adaptive Metaheuristic
Selection (DAMS) framework [3] by investigating on-line portfolio methods in
a distributed environment. The DAMS framework is basically motivated by the
increasing number of parallel computing facilities (multi-cores, clusters, etc) and
the compute power that can offer when tackling hard optimization problems.
DAMS is also tightly related to Evolutionary Algorithms (EAs) based on the
Island model [15]. parallelize EAs. In such a model, the population is divided into
several subpopulations. Each compute node (an Island) applies an EA on those
subpopulations, and the subpopulations can interact within a migration phase
where solutions can be exchanged. In the context of on-line portfolio methods,
we are interested in a heterogeneous island model where each island applies its
own and possibly different EA. More precisely, the DAMS framework focuses
on setting up adaptive strategies to select at each round a relevant EA which is
applied to the local sub-population in order to maximize the performance of the
whole distributed system. The goal of this paper is to integrate new distributed
adaptive strategies and to study their impact within the DAMS framework. In
the rest of this paper, we first review some works related to DAMS. Then, we
propose a classification of distributed selection strategies into independent and
collective ones according to the information exchange. An experimental analysis
is then provided and the impact of the considered strategies is reported.
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1.2 Related work

Two classes of parameters can be controlled in an island model: the parameters
related to the migration policy, and the parameters that define the algorithm at
each node.

Control of the migration policy: Candan et al. [2] propose to control the
migration policy on-line in an heterogeneous island model where each island can
apply its own EA. A parameter p;; is used to define the migration rate between
islands ¢ and j. According to the island performance in producing promising
solutions, the rates are updated using a reinforcement learning principle. Fer-
dandez et al. [5] propose a control method of the EA migration policy when the
population is 2d-spatially structured following a 2d-grid. The migration, and
thus the EA matting, is controlled by moving the solutions on the grid either
randomly, or towards a cell surrounded by similar solutions.

Control of the EA parameters: Instead of using the same parameters set-
ting in every island, in a heterogeneous island model, each island applies its own
algorithm. In order to demonstrate the usefulness of such heterogeneous model,
Tanabe et al. [8,13] show that a collection of random parameters provides bet-
ter performance than a uniform static setting. The study focuses on continuous
optimization and differential evolution algorithms, and also on two classes of
combinatorial problems (QAP, TSP) using a simple genetic algorithm. Follow-
ing similar ideas, Garcia-Valdez et al. [7] showed that for distributed pool-based
EA which is another model of heterogeneous islands, a random set of parameters
used by a simple GA on the P-Peaks problems outperforms a static setting.

However, in a heterogeneous island model, random parameter setting is not
the only possibility. In fact, each EA associated to each island can be controlled
during the optimization process according to state of the search in past iterations.
For instance, Tongchim et al. [16] proposed to select the parameters (cross-over
and mutation) of a simple EA adaptively. Two set of parameters are compared
on the same compute node, and the best setting with the best solution is sent to
other islands. The authors showed that this kind of on-line mechanism improves
over static or random settings.

The DAMS framework [3] proposes to locally select at each round and for
each node a metaheuristic from a portfolio of metaheuristics in order to maximize
the performance of the whole distributed system. For each compute node using a
selection strategy, a metaheuristic is selected not only according to the previous
performance of the node, but also according to the performance observed and
communicated by neighboring nodes. In their paper [3], Derbel et al. propose a
simple but yet effective strategy called Select-Best-and-Mutate. In this paper,
we propose to analyze other alternative selection strategies taking inspiration
from existing multi-arm bandit strategies, but in a distributed (island) model.
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2 Adaptive selection strategies for DAMS

We first recall the DAMS framework and the original Select-Best-and-Mutate se-
lection strategy. Alternative independent and collective selection strategies based
on classical multi-arms bandit strategies are then proposed.

2.1 DAMS and Select-and-Best-Mutate strategy

The Distributed Adaptive Metaheuristic Selection (DAMS) framework has been
introduced in [3]. Algo. 1 gives the original algorithm using a generic metaheuris-
tic selection strategy. DAMS is a heterogeneous island-like model algorithm. In
each compute node, a metaheuristic from a portfolio is applied on the local
subpopulation, and the metaheuristic could be different from one node to an-
other. The authors distinguish three basic levels that can be controlled during
one round of a DAMS algorithm: the distributed, the metaheuristic selection
and the atomic levels. At the distributed level, information between neighboring
nodes are shared, migration of solutions is achieved, and the reward of the meta-
heuristic that has been executed on the node is communicated to neighbors, and
vice-versa. At the metaheuristics selection level, one metaheuristic is selected
from the portfolio according to previously collected rewards. At the last level of
the algorithm, called ’the atomic low level’ in the original paper, the selected
metaheuristic is applied and the corresponding reward is computed.

The authors also proposed the so-called Select-Best-and-Mutate (SBM) to
be used at the selection level. SBM strategy is simply based on a metaheuristic
mutation rate pp,.¢. With probability 1 — py,.:, SBM selects the metaheuristic
having the best reward in the last round among all neighbors (including the cur-
rent node), and with rate pyq.¢, SBM selects one random metaheuristic from the
portfolio M different from the best one. In others words, SBM has an intensifi-
cation component that selects the best rewarded metaheuristic at the previous
round from the neighboring metaheuristics, and a diversification component that
allows to explore new randomly selected metaheuristic. This strategy is related to
the well-known e-greedy strategy in multi-armed bandit problem, which selects
the arm with the highest estimated expectation with rate 1 — ¢, and uniformly
random arm with rate €. In SBM, the reward of metaheuristic is the maximum
reward observed in the last round in the node and the neighboring nodes. There
is no long-term memory mechanism which computes an estimated average re-
ward from the previous rounds, and the maximum reward is estimated using the
neighboring nodes.

2.2 Independent vs. collective selection strategies

Similar to the distributed multi-arm bandit problem, in the distributed adap-
tive portfolio methods, the collaboration of the k compute nodes can contribute
to improve the estimation of the quality of metaheuristics, but with an addi-
tional communication cost due to information sharing between nodes. Hence,
a distributed metaheuristic selection strategy has to take care of this classical
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Algorithm 1: DAMS algorithm for each computation node

Inputs: A portfolio of metaheuristics M
r < INIT_REWARD()
M «+ INIT-META(M)
P + INiT_Pop()
repeat
/* Distributed Level:
migration and information sharing */
Send Msg(r, M, P) to each neighbor
P—{};S<{}
for each neighbor w do
Receive Msg(r’, M', P') from w
P+ PU{P'}
S+ Su{(r', M)}
P < UPDATE_POPULATION(P, P)
/* Metaheuristic Selection Strategy Level */
M < SELECT_META(M, (r, M), S)
/™ Atomic Low Level:
apply metaheuristic and compute reward */
Prew <+ APPLY(M, P)
r + REWARD(P, Prew)
P <+ Puew
until Stopping condition is satisfied;

trade-offs in distributed systems. Moreover, multi-arm bandit strategies are of-
ten a combination of two parts, one exploitation part which promotes the best
estimated arm, and one exploration part which looks at new random arms. The
exploration part is particularly important when facing a non-stationary problem.
The strategy should be able to explore arms for which the reward could have
changed. Therefore, when several computation nodes collaborate to improve the
metaheuristic quality estimation, the exploitation part could be reinforced too
much forcing the strategy to converge too quickly in a non-stationary scenario.

We distinguish two extreme types of selection strategies according to the in-
formation sharing between nodes. In independent selection strategies, the meta-
heuristic selection depends solely on the reward information produced locally by
the node. In collective selection strategies, the selection takes into account the
reward information communicated by the neighboring nodes. For example, the
SBM strategy is a collective strategy, and a baseline strategy which selects a
metaheuristic uniformly at random is an independent strategy.

2.3 Independent selection strategies

First, we can derive a simple independent selection strategy from the original
SBM strategy. In fact, instead of selecting the best rewarded metaheuristic from
neighboring nodes, we can select the best rewarded metaheuristic in the last W
rounds and executed locally by a node — no reward information from neighbors is
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used. Accordingly, the original collective SBM strategy will be denoted as SBMc,
and the newly designed independent SBM by SBMi. Notice that SBMi comes
with two parameters, the original mutation rate py,.+, and the windows size W.

The so-called Adaptive Pursuit (AP) belongs to the class of probability
matching algorithms. AP is a classical adaptive selection strategy used in opti-
mization [14], and can be used as an independent selection strategy. In adaptive
pursuit algorithm, a metaheuristic ¢ is applied at time step ¢ in proportion to
a probability p;+, and those probabilities are updated according to the rewards
of metaheuristics. This technique is then divided into three parts: the update
of the reward estimation §;; of the metaheuristics, the update of the proba-
bilities p; +, and the selection of the metaheuristic. Eq. 1 defines the update of
estimated reward of the metaheuristic 4. Variable r; ; is the reward at round ¢ of
the metaheuristic 7, and parameter o € (0, 1] is the adaptation rate.

Gigr1 = Gie + o (Tie — Qit) (1)

The update of the probabilities p;, is given by Eq. 2 where i} denotes the
metaheuristic with the best §; ¢:

Dives = Pit + B . (Pmax — i), if 1 =i} 2)
v Dit + B - (Pmin — Pit), otherwise.

For the best estimated metaheuristic, the probability converges to pmq. with
the learning rate 3, for the other metaheuristics, the probability converges to
Pmin- At round ¢, the AP selects the metaheuristic at random in proportion of
probability p; ;. This independent strategy is denoted by APi.

Several Upper Confidence Bound (UCB) algorithms are used in the context
of adaptive metaheuristic selection (see [6] for a review). Let n;; denotes the
number of times the i'" metaheuristic is applied up to round ¢, and let §;,
denotes the average empirical reward of metaheuristic i. At each round ¢, UCB
selects the metaheuristic that maximizes the following quantity:

Gii+C . 210g(2j nj.t)
Nt

Parameters C enable to control the exploitation / exploration trade-off. This

independent selection strategy is denoted by UCBi.

The UCB strategy is an optimal strategy for stationary problems with inde-
pendent arms which is actually not the case metaheuristics control. The average
empirical reward could be far from the current new reward. To overcome this
drawback, the average empirical reward can be computed over a slicing windows
by considering the last W rounds. This variant is denoted by UCB-Wi.

Finally, a dynamic version of UCB is introduced in [6] and uses the Page-
Hinkley test to detect whether the empirical rewards collected for the best meta-
heuristic have changed significantly. For more details, the reader is referred to
page 6 in [6]. This selection strategy will be denoted by UCBP-PHi, and it
requires two parameters: a restart threshold + and a robustness threshold §.
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2.4 Collective selection strategies

Each of the above-mentioned independent selection strategies can be used to de-
fine a collective selection strategy that takes into account the reward information
exchanged with neighboring nodes. In collective SBM which is the original one,
the best rewarded metaheuristic is selected from the set of neighboring nodes. In
collective AP, the rewards of all neighbors are iteratively used to update the es-
timation of reward §;. Notice that the order of the update could have an impact
on the estimation. So, at the initialization phase, a pre-established order be-
tween neighboring nodes is randomly chosen. Then, after the updates of reward
G, the probability p; is updated once for all neighbors. In the collective versions
of UCB strategies, the empirical average 7; is also updated using the rewards of
neighboring nodes. The numbers of times n;; that each metaheuristic is applied
is also update according to the information given by each nodes. Notice that in
that case, the order of the update does not matter. The selected metaheuristic
is the metaheuristic selected after taking into account all neighbors information.
Those collective strategies versions are denoted respectively SBMc, APc, UCBc,
UCB-Wc¢, UCB-PHec.

3 Experimental Analysis

3.1 Experimental Setup

Following previous works [16, 3, 6,2] on adaptive portfolio selection, we also use
the well known one-Max problem, which counts the number of 1 in a bit string.
In a similar scenario, we use a portfolio of four (1 + A)-ES: from one parent
solution, the algorithm produces A solutions according to a stochastic operator
and selects the best one for the next iteration. Four operators are used: three
operators respectively flip exactly 1, 3 and 5 bits, and the last one uniformly
flips each bit with rate 1/N where N is the bit strings size set to N = 1000.
We use an elitism migration mechanism. Each node (island) sends their cur-
rent solution to their neighboring nodes. Then, each node receives all solutions
from the neighboring nodes. The best solution from the set containing the re-
ceived solutions and the current solution of the node replace the current solu-
tion of the each node. The DAMS algorithm stops when the global maximum is
found by one node of the distributed system, when the number of rounds exceeds
Tiimiz = 5.10%. 200 runs are computed for each possible strategy and topology.
The performance of algorithms is measured either with the number of rounds to
reach the global maximum, either using the expected running time (ERT). ERT
is expected running time to reach a level fitness of the algorithm with simulated
restart. It is equal to Es[T] + (1 — Ps)/Ds-Trimit where ps the estimated success
rate, and E;[T] is the average number of rounds when the fitness level is reached.
We study four topologies of network: the complete topology where each node
is connected to all others nodes, a random topology where there is an edge
between two nodes with probability p = 0.1, the grid topology which is a two-
dimensional regular square grid where each node is connected to the four nearest
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neighbors, and the circle topology where the nodes are connected to two others
nodes to form a circle. The size of the networks is n € {4,16,32,64}. In order to
have the same number of fitness evaluations in one round whatever the network
size n, the A parameter is set to 64/n.

A couple of parameters are used in the different selection strategies. For the
SBM strategies, the value of metaheuristic mutation rates are pm,: € {0.001,
0.002,0.01,0.1}. The window size of the SBMi is set to 5. For AP, the extreme
values are set to pmin = 0.1 and pye = 1. The adaptive and the learning
rates are « € {0.1,0.25,0.5,0.75,1} and 8 € {0.1,0.25,0.5,0.75,1}. For all the
UCB strategies, the parameter C' values are {0.1,0.5,5,25,100}. For the variant
UCB-W, the set of windows sizes is {10,100, 1000}. Following [6], the param-
eters of Page-Hinkley test are to § = 0.15, the restart thresholds ~ are from
{0.5,0.75,1,2,5,10}. Moreover, 2 baseline strategies are used: the random one
(rnd.) select at random at each round a metaheuristic, and the constant one
(cst.) always select the same metaheuristic which is randomly chosen at the
beginning.

3.2 Computational Results

One-Max Overall Performance. From a purely distributed perspective, the
first interesting measure is the number of rounds it takes for an algorithm to find
the global maximum. The number of rounds provides an idea about the degree of
parallelism in an ideal scenario where the communication cost is assumed to be
negligible compared to the cost of function evaluation. The relative performance
of the different strategies is summarized in Table 1. The best performing pa-
rameters are set for each strategies. Several observations can be extracted from
Table 1. First, the performance of the different strategies are consistent with the
considered configurations in the sense that they can overall be ranked similarly
independently of the topology type or graph size. More importantly, we remark
that the impact of exchanging rewards information between node has a strong
impact on performance. Interestingly, this impact is positive in the case of SBM
and AP, whereas it is not when considering UCB. In fact, SBMc appears to
overall outperform all the other strategies and APc appears to performing best
when both considering the circle, grid and random topologies with large number
of nodes. In contrast, the performance of the four implemented versions of UCB
is deteriorating systematically as the information from neighbors is incorporated.
We attribute this to the fact that this information is actually pushing the UCB
strategy to diversify more the search as soon as some operators (even with a
good rewards) has been used by other neighboring nodes. UCB is less effective
than random selection. The C-value which tunes the exploration-exploitation
tradeoff has no impact on this result. Indeed, we have performed an extended
sensitive analysis of parameter C' (not presented here to save space) which does
not changed this result. This also suggests that the UCB strategy has to be
completely rethought in order to infer accurate exploration-exploitation tradeoff
in the dynamic distributed setting. Notice however, that independent UCB-HPi
is still able to provide very competitive results compared to SBMc and APc.
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Table 1. For each topology and graph size, number of selection strategies which sta-
tistically outperforms (according to the Wilcoxon test at confidence level p = 0.05) a
given strategy method for the one-Max problem with N = 1000. The 0 value is the
best one: no other strategy significantly outperforms the considered one.

. . UCB
Topo. [Size|| cst. |rand.|SBMi| SBMc | APi | APc - : -
UCBi [UCBc[HPi| HPc | Wi [ We
circle | 4 8 4 1 0 7 7 10 11 2 3 3 3
circle | 16 4 6 3 0 4 0 10 11 1 6 6 6
circle | 32 4 6 3 1 4 0 10 11 2 6 6 9
circle | 64 4 6 3 2 4 0 10 11 1 6 6 9
grid | 4 8 4 1 0 4 9 10 11 2 4 3 3
grid | 16 4 5 2 0 4 0 10 11 1 4 6 4
grid | 32 4 5 3 1 4 0 10 11 1 4 4 6
grid | 64 4 6 3 1 4 0 10 11 1 6 6 9
rnd. | 4 7 3 0 0 5 7 10 11 0 3 3 3
rnd. | 16 4 4 1 0 4 3 10 11 1 4 4 5
rnd. | 32 4 4 3 1 4 0 10 11 2 4 4 9
rnd. | 64 4 4 3 1 4 0 10 11 1 4 4 9
compl.| 4 7 3 1 0 7 7 10 10 2 3 3 3
compl.| 16 6 3 1 0 5 6 11 10 | 1 4 3 9
compl.| 32 3 3 2 0 3 8 11 10 1 3 3 9
compl.| 64 3 3 2 0 3 3 11 10 1 3 7 9

| Average [[4.875[4.312] 2 [0.4375[4.375[3.125[10.187]10.75[1.25]4.187[4.437[6.562]

Sensitivity to parameters. In the previous discussion, we were focused on
the overall behavior of the different strategies for a fixed parameter setup. In
fact, one may wonder what is the impact is of the parameters used for every
strategy. This is illustrated in Fig. 1 where we give representative examples on
the sensitivity of SBM, AP and UCB-HP to different parameter settings both in
the case of an independent and a collective strategy. We can appreciate that SBM
is rather stable under different configurations although for the collective variant,
the impact of the mutation rate is slightly more pronounced (a small values
is advised). The same thing holds for the AP strategy where the algorithm is
robust to a wide range of values of o and 3, with he exception of the adaption rate
« = 1 which is to be avoided since it promotes strong convergence in the reward
estimation. For the UCB-HP strategy, the value of C, which appears in the
confidence bound, plays an important role but only in the independent strategy.
For the collective strategy, where the information from neighbors is actually
deteriorating performance, the C-value does not seem to have any impact and
cannot help obtaining improved results.
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Fig. 1. Average number of rounds to find the maximum of the one-Max problem as
function of the parameter values of different selection strategies. From left to right:
SBM, AP, UCP-HP strategies ; top: independent selection, bottom collective selection.

Parallelism. In the previous discussions, we were only interested in analyzing
the relative behavior of the strategies for a fixed topology. In particular, the
results of Table 1 do not allow us to appreciate the relative impact of different
topologies on the performance of each strategy. For this purpose, we show in
Fig. 2 the relative performance of SBM and AP in different configurations. It is
important to recall that the number of function evaluations at every single round
and for all the considered configurations is the same which means that the num-
ber of function evaluations needed overall in any of the considered configuration
is by the same multiplicative factor similar to the number of rounds depicted
in Fig. 2. This observation has an important impact, since then, we are able to
obtain different trade-offs when considering the number of exchanged messages
as an important indicator of parallel speed-ups that one could obtain when effec-
tively deploying our strategies in a real distributed setting. In fact, the number
of messages needed to exchange information is exactly the number of rounds
times the number of edges used in the considered topology. In the case of the
complete (resp, circle, grid, random) topology, the number of edges is n(n—1)/2
(resp. n — 1, O(n), O(p.n?)) where n is the number of nodes. From Fig. 2, we
can notice that the number of rounds stays stable for the complete and random
topology (except for 4 nodes) with the complete topology being slightly bet-
ter. However the number of rounds increases sharply for the circle and the grid
which we attribute to the increase of the topology diameter. Roughly speaking,
although the increase in the number of rounds for the circle and the grid is at
most by a factor of 2, the number of needed messages stays linear in the number
of nodes. This is to contrast with the complete topology where the increase in
the number of messages is polynomial. Hence, in a practical setting where the
cost of message-passing is non-negligible, we claim that the best choice would
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Fig. 2. Average number of rounds to find the maximum (one-Max problem) according
to the topology and the number of nodes. From left to right and top to bottom: SBMi,
SBMc, APi, and APc strategies.

be the random topology which exhibits the most appealing tradeoffs in terms of
the number of rounds v.s. the number of messages exchanged overall.

NK-landscapes In this paper, we also consider a more sophisticated class of
problems captured by the so-called NK-landscapes. The family of NK-landscapes
constitutes a model of multimodal problems [9]. The search space is binary
strings of size N: {0,1}". N refers to the problem size, and K to the number
of bits that influence a particular position from the bit-string, i.e. the epistatic
interactions. The objective function f : {0,1}¥ — [0,1) to be maximized is
defined as follows.

1 N
fl@) =5 D filwiwis i wi)
=1

where f; : {0,1}%+! — [0,1) defines the component function associated with
each bit z;. By increasing the number of epistatic interactions K from 0 to (N —
1), NK-landscapes can be gradually tuned from smooth to rugged. In this work,
we set the position of these interactions at random. Component values are uni-
formly distributed in the range [0, 1).

Our interest in the NK-landscapes stems from the fact that usually different
bit-flip mutation rates are believed to provide different performances. To illus-
trate this claim, we show in Fig. 3, the empirical probability that a solution with
the fitness given by the x-axis is be improved if a uniform bit-flip operator with
rate ¢/N is applied, where ¢ varies in the range {1,2,4,8,16}. We can clearly see
that the operator which is likely to provide an improvement depends strongly
of the attained fitness level. Hence, this kind of landscapes appears to be par-
ticularly interested to be studied within the DAMS framework. Accordingly, we
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Table 2. Rank of the different strategies according to the topology and the number of
computation nodes for NK-landscapes with N = 1000 and K =1,4,8.

. . . . UCB
Topo. |Size||unif.| cst. [rand.|SBMi|SBMc| APi | APc - - -
UCBi|UCBc| HPi [HPc[ Wi [ We
K=1
compl.| 16 0 9 6 3 7 12| 2 1 10 4 5 8 | 11
compl.| 64 0 | 10 7 6 1 4 9 12 3 2 5111 | 8
circle | 16 0 2 11 3 5 1 (10| 8 7 6 |4 (12| 9
circle | 64 0 7 8 2 1 6 4 12 3 |10(11] 5
average 0 7 8 3.5 | 3.5 |5.75|6.25|8.25| 7.25 [3.75| 6 [10.5| 8.5
K=4
compl.| 16 || 0 6 12 9 1 111 3 2 4 8 110 5 | 7
compl.| 64 0 6 3 8 5 11 | 12 1 4 10 | 2 7 9
circle | 16 1 11| 12 8 4 5 6 3 7 0 21109
circle | 64 0 | 10 9 11 6 7112 5 4 3 2 1 8
average |[(0.25|8.25| 9 9 4 |8.5(8.2512.75]4.75(5.25| 4 |5.75|8.25
K =28
compl.| 16 1 3 9 0 11 7 6 2 10 4 8 5 |12
compl.[64 || O |12 | 4 10 3 6 | 9|11 2 518 |1 7
circle | 16 7 0 4 5 6 12 | 3 9 10 2 1 8 |11
circle | 64 0 2 12 3 11 8 9 5 10 7 1 4
average 2 (4.25]7.25| 4.5 | 7.75|8.25|6.75/6.75| 8 [4.5(45[45| 9

perform the same experiments while considering different NK-landscapes with
N = 1000 and K € {1,4,8}. The portfolio of metaheuristics is composed by
five (1 + A\)-ES based on the uniform bit-flip rate ¢/N with rates ¢ = 1,2,4, 8,
and 16. We tune the parameters according to the results the one-Max problem:
Prut = 0.01 for SMB, o = 0.5 and 8 = 0.5 for AP, and C' = 25 for UCB strate-
gies. Interestingly, we find that no significant differences can be reported between
any of the considered selection strategies when looking at the final fitness value
(this is nor reported due to space limitations). However, we are able to report
different behavior when examining the empirical expected running time (ERT)
to attain the median fitness value (computed over all configurations).

The ERT results are summarized in Table 2. In addition to adaptive selection
strategy, we also tested a uniform and static strategy, denoted unif in the table,
where every nodes share the same metaheuristic all along the execution. In the
table, we choose to present the performance of the best uniform-static strategy
which is not the same according to the topology and the number of nodes.
Perhaps, the most interesting observation is than the uniform-static strategy
is the best performing and none of the considered DAMS variants is able to
outperform it. This might be surprising at first sight, but not if we account for the
time required to learn the best metaheuristic to apply. In fact, when examining
carefully Fig. 3 in light of the information given by the empirical improvement
probability, we can see that the fitness level is increasing very abruptly for NK-
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landscapes in the early stages of the search. Hence, the different fitness windows
where one has to choose the best operator are very tight which is to contrast with
the time it may need for a strategy to detect which operator is actually the best
to apply. As a consequence, even though the fixed operator used by a uniform
static strategy is not optimal in all the stages of the execution, it still does not
loose time in learning by testing less efficient operators. It worth-noticing that the
previous experiments raise the question of whether we really need to adapt the
search heuristics at runtime and does it really serve in practice? We argue that
the answer to this question is definitively yes. In fact, the general lessons that we
can learn from our experiments with the NK-landscapes can be formulated as
following. First, in a black-box scenario, the time during which a metaheuristic is
the best one depends strongly on the landscape. Hence, learning this landscape
at runtime is for sure a plausible alternative. Second, we need to study more
carefully the cost of the learning stage of selection strategy in function of the
considered landscape, and to design novel alternative adaptive strategy that
would be able to minimize the learning cost at the aim of improving efficiency.
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Fig. 3. Empirical improvement probabilities vs. fitness level (left). Fitness vs. rounds in
log-scale. Center: uniform-static, right: different strategies. NK-landscapes with K = 4.

4 Conclusion

In this paper, we investigate new adaptive strategies for distributed metaheuris-
tic selection. Accordingly, we explored the applicability of adaptive pursuit and
upper bound confidence based algorithms in the distributed setting where sev-
eral heterogeneous islands have to cooperate in order to select the most accurate
metaheuristic dynamically at runtime. In particular, we consider the possibil-
ity of incorporating the distributed information coming from the neighboring
islands and study its impact on the search behavior by considering independent
and collective schemes. We conduct a throughout experimental study in order
to better understand the major ingredients toward making such schemes suc-
cessful. We find that special care must be taken when attempting to use the
rewards observed distributively at different islands in order to obtain accurate
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exploration-exploitation trade-offs. Besides, our study keeps open several ques-
tions that deserve further investigation in the future. For instance, we could
analyze the selection strategies on others benchmarks such as knapsack or graph
coloring problems. It would also be interesting to study the gain one can achieve
by the proposed strategies when effectively deployed in a real distributed test-
bed. In such a setting, the communication cost is very likely to introduce new
challenges; but the increasing power offered by modern computation systems is
worth to be investigated in order to derive highly efficient adaptive strategies.
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Abstract. We present evidence indicating that adding a crossover is-
land greatly improves the performance of a Dynamic Island Model for
Adaptive Operator Selection. Two combinatorial optimisation problems
are considered: the Onemax benchmark, to prove the concept; and a
real-world formulation of the course timetabling problem to test prac-
tical relevance. Crossover is added to the recently proposed dynamic
island adaptive model for operator selection which considered mutation
only. When comparing the models with and without a recombination, we
found that having a crossover island significantly improves the perfor-
mance. Our experiments also provide compelling evidence of the dynamic
role of crossover during search: it is a useful operator across the whole
search process. The idea of combining different type of operators in a
distributed adaptive search model is worth further investigation.

1 Introduction

Search operators are key elements of heuristic search algorithms, determining
the structure of the fitness landscape being searched. A large variety of opera-
tors have been proposed in the literature for combinatorial optimisation prob-
lems. However, given a new problem or instance of a combinatorial problem it
is not clear before hand which operator (or indeed set of operators) will be the
most effective. In response to this, modern heuristic approaches combine several
operators. Some schemes such as variable neighbourhood search, or standard
memetic algorithms combine operators in a pre-determined way. Some other
schemes, such as hyper-heuristics [2,12], and adaptive operator selection ap-
proaches [10], acknowledge the advantage of combining a pool of operators; but
most importantly, they also realise that the usefulness of specific operators can
vary dynamically across the search process. Therefore, they propose adaptive,
learning-based mechanisms for selecting operators on the fly.

Island models [18] were initially introduced for avoiding premature conver-
gence in evolutionary algorithms (EAs). They use a set of sub-populations in-
stead of a single a panmictic one. Sub-populations evolve independently on sep-
arated islands during some search steps and interact periodically with other
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islands by means of migrations [14], whose impact has been carefully studied [8,
9]. Two main types of island models can be considered. First, replicating the
same algorithm on each island with the view of improving the management of
the population. This constitutes the most common use of island models and is
closely related to distributed evolutionary algorithms [9]. Second, considering
different algorithms (or algorithms settings) on each island as a dynamic con-
trol method in order to identify the most promising algorithm according to the
current state of the search.

Island models traditionally use fixed migration policies in order to reinforce
the islands characteristics [15,6,1]. An alternative dynamic migration policy
was proposed by Lardeux and Goéffon [7], where migration probabilities change
during the evolutionary process according to the impact of previous analogue
migrations. The island model should be able to both identify the current most
appropriate subset of islands for improving individuals, and to quickly react to
changes if other heuristics (operators) turn out to be more beneficial.

It is important to stress that in this article, the island model does not im-
plement a complete evolutionary algorithm in each island as it is usually done.
Instead, each island is associated with a single (different) search operator, and
in every iteration the island’s operator is applied to all individuals in the island.
This constitutes an approach to adaptive operator selection as recently pro-
posed by Candan et al.[3]. The ability of the dynamic island model to efficiently
manage simple operators has already been compared to other adaptive opera-
tor selection approaches in [3] . So far, mutation operators or abstract scenarios
have been considered. The motivation of this paper is to assess the efficiency of
the island model in presence of different kinds of operators, such as crossover
on various problems. The idea is to assign an operator to each island and use
the dynamic regulation of migrations to distribute the individuals on the most
promising islands (i.e., the most efficient operators) at each stage of the search.

The main contribution of this article is the introduction of crossover in con-
junction with mutation operators, while the original adaptive operator selection
model considered only mutation operators [3]. In our proposal, individuals from
different islands can undergo recombination when they “visit” the recombina-
tion island and thus may directly share information. We found that having a
crossover island significantly improves the model’s performance. We demonstrate
this by comparing the models with and without recombination on two selected
benchmarks: the Onemax problem, widely used to prove concepts in adaptive
operator selection studies [5,4, 3]; and a formulation of the course timetabling
problem considering the set of publicly available real-world instances from the
2007 International Timetabling Competition ITC-2007 [11].

The article is organised as follows. Section 2 introduces the dynamic island
model of adaptive operator selection, and how we incorporated crossover into
it. Section 3 describes the experimental setting, while results are presented in
Section 4. Finally, Section 5 summarises our findings and suggests directions for
future work.
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2 Crossover as an Island Operator

We start by formally presenting the dynamic island model for adaptive operator
selection and follow by describing how crossover was incorporated.

2.1 Dynamic Island Model

Let us consider an optimisation (minimisation) problem defined as a pair (S, f)
where § is a search space whose elements represent candidate solutions of the
problem, and f : & — R is an objective function. An optimal solution is an
element s* € § such that Vs € S, f(s*) = f(s).

An Island Model can be formally defined as a tuple (Z,H,P,V, M). Where
Z = {i1, - ,in} is the set of Islands, H = {Hy, -, H,}, a set of heuristics
(operators in this paper), and P = {p1, - ,pn} a collection of sub-populations,
one per island. The topology of the model is given by an undirected graph
G(Z,V) where V' C Z? is a set of edges between islands (Z, the nodes of the
graph.) Finally, the migration policy is given by a square matrix M of size n,
such that M (¢, 5) € [0, 1] represents the probability for an individual to migrate
from island i to island j. Each island k is equipped with a sub-population p; and
an operator Hy. The matrix M is coherent with the topology, i.e., if (i,j) € V
then M(i,7) = 0. Algorithm 1 outlines the operation of an Island Model for
minimisation problems.

Algorithm 1 Basic Island Model
Require: an IM (Z, A, P,V, M), an Optimisation problem (S, f)

1: while not stop condition do

2 for i + 1 ton do

3 pi + Hi(pi)

4 for s € p;, do

5: for j «+ 1 ton do

6: generate a random number rand
7 if rand < M(i,7) and |p;| > 0 then
8: pj < pj U{s}

9: pi < pi \ {s}
10: end if

11: end for
12: end for

13: end for

14: b <+ best(J;(p:))

15:  if f(b) > f(s") then
16: ¥ +b

17: end if

18: end while

19: return s*
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In the algorithm, p; denotes the sub-population at island ¢ and H;(p;) (line
3) the population obtained after applying heuristics H; on it. The function best
computes the best current individual w.r.t. objective function f. The stopping
condition is, as usual, a limited number of iterations or the fact that an optimal
solution has been found in the global population. The migration matrix M is
used to send individuals to other islands or stay on the same one.

In dynamic island models, an adaptive update of the migration matrix at
iteration ¢t 4+ 1, denoted Myy1, is performed as:

My (i, k) = (1 — B)(a. M (i, k) + (1 — @) R; +(k)) + BN (k)

where IV; is a stochastic noise vector such that ||N¢|| = 1 and R; is a reward
vector that is computed after applying H; at time ¢. « allows to control the bal-
ance between previous knowledge accumulated and immediate observed effect.
(B controls the amount of noise, which is necessary to explore alternative actions.
These parameters need to be tuned and their impact has been studied in [3].
The reward R; (k) is defined as:

L .
R OERS Hhep,
’ 0 otherwise,

where B is the set of the operators that have been produce the best improvement
for each island i.e., operators producing the best improvements according tof
for each island at a given time.

2.2 Incorporating Crossover

Mutation heuristics perform a change on a given solution, by swapping, changing,
removing, adding or deleting solution components. In contrast crossover opera-
tors, take two (or more solutions), combine them and return a new solution (or
more than one solution).

Let s € S be a solution. A (unary) mutation operator can be formally defined
as H,, : § — S. Crossover operators can in turn, be defined with the following
signature H, : § x § — & x §. We propose to incorporate crossover as an
island operator. The key idea is to define the crossover H. with a similar formal
signature than mutation H,,.

Algorithm 2 Standard Operator Island
Require: a population p
: OffspringPool = 0
: for all s € p do

OffspringPool = OffspringPool U {H (s)}
end for
return OffspringPool

Al S v
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Algorithm 2 outlines the behaviour of an operator island in the island model.
The operator H is applied at line 3. The crossover island uses the same overall
Algorithm 2, but to apply recombination (H.) with the same signature than
mutation, it requires a single solution as parameter. The crossover is performed
using the incoming solution as one parent. The other parent is either a random
solution (only for the first iteration) or the last incoming solution. The best
generated offspring is then returned. This is outlined in Algorithm 3. With this
simple mechanism we can combine mutation and recombination operators in the
island model for adaptive operator selection.

Algorithm 3 Crossover Operator H,

Require: s incoming solution
1: if Temp is undefined then
2:  Temp = randomSolution()
3: end if
4: Of fsprings = Crossover(Temp, s)
5 Temp=s
6: return Best(Of fsprings)

3 Experimental Setup

Two algorithm variants are considered: DIM-M, a dynamic island model of adap-
tive operator selection with mutation operators only, and DIM-MX, which com-
bines mutation and recombination. They are tested using the benchmark prob-
lems and algorithm setting described below.

Onemax: (or counting ones problem), is a unimodal maximisation problem tra-
ditionally used in theoretical and proof of concept studies in genetic algorithms,
where the string of all ones is the single optimum. Following Candan et.al [3] we
use a Onemax instance of size n = 1000, the algorithm parameters are summa-
rized in Table 1. Four mutation operators and one recombination operator are
considered. Each operator is assigned to an island and it is applied regardless of
whether it improves or not the incoming solution. The operators used are:

— bit-flip mutation: flips each bit with probability 1/n.

— k-bit mutation: (with k= 1,3,5), chooses uniformly at random k bits in the
current solution and flips their values.

— 1-point crossover: chooses uniformly at random position in the string, and
interchanges the sub-strings to produce offspring.

Course Timetabling: is a minimisation problem where the objective is to
assign several events to time-slots without violating certain constraints. The
problem can be defined in terms of a set of events (courses or subjects) F =
{e1,€a,...,e,}, a set of time-periods T = {t1,1o,...,ts}, a set of places (class-
rooms) P = {p1,p2,...,pm}, and a set of agents (students registered in the
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courses) A = {a1,a2,...,a,}. An assignment is then given by the quadruple
(e€ E,teT,p€ P,ac A), and a solution to the problem is a complete set of n
assignments (one for each event) that satisfies the set of hard constraints. Our
formulation uses a generic modelling approach where solutions are encoded as
vectors of integer numbers of length equal to the number of events (courses) [16,
17]. Positions in the vector represent events, and their integer values are indices
in a set of data structures encoding pairs of valid time-slots and classrooms for
each event [16]. A set of four mutation operators are considered, which were
the best performing in [17]. They range from simple randomised exchange or
swap neighbourhoods to greedy and more informed procedures. As a crossover
operator we implemented the simple I-point crossover. This is possible with the
representation used (a vector if integer numbers) where offspring generated by
1-point crossover are valid solutions.

— Simple Random Perturbation (SRP): uniformly at random chooses a variable
and changes its value for another one inside its feasible domain.

— Swap (SWP): selects two variables uniformly at random and interchanges
their values.

— Statistical Dynamic Perturbation (SDP): chooses a variable following a prob-
ability distribution based on the frequency of variable selection in the last k
iterations. Variables with lower frequency will have a higher probability of
being selected. Once selected, the value is randomly changed.

— Double Dynamic Perturbation (DDP): similar in operation to SDP, but in-
ternally maintains an additional solution, and returns the best of the two
solutions.

— 1-point crossover: chooses uniformly at random position in the vector, and
interchanges the sub-portions to produce offspring.

The experiments considered the 24 real-world instances from the 2007 Inter-
national Timetabling Competition IT'C-2007, track 2, which correspond to the
post-enrollment course timetabling benchmark®. These instances range from 400
to 600 events. Table 1 reports the algorithm parameters used. Experiments were
conducted on a CPU with Intel i7, 8GB Ram using the Java language and the
64 bits JVM.

4 Results

4.1 Onemax

Figure 1 illustrates an example run of the two algorithm variants on the Onemax
problem. DIM-M contains 4 islands, one for each mutation operator, while DIM-
MX has 5 islands, corresponding to the 4 mutations and the 1-point crossover.

! Available at http://www.cs.qub.ac.uk/itc2007/
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Table 1: Algorithm parameters for the two benchmark problems.

Parameter Onemax Course Timetabling
Chromosome length 1000 400 to 600
Population size 800 1000
Number of islands 4 or 5 (one for each operator)
Initial migration 1/ number-of-islands

(o, B) (0.8,0.1) (0.8,0.1)

No. of runs 10 10 per instance
Stop Criteria Optimum is found 540 sec

The curves show, for each operator (island), the sub-population size over time
measured as iterations, and reported at intervals of length 150 (the X values
are x10). We consider an iteration as a single complete execution of the DIM
algorithm, which this corresponds to a move or migration of individuals across
islands. The plot also shows (the black solid line) the best individual fitness over
time, with values visible in the right-hand axis. The variant without crossover
(DIM-M, left plot) required over two minutes (128.32 seconds) to reach the global
optimum, which corresponds to nearly 7,000 iterations and 68,251 functions calls.
The plot shows how the most explorative 5-bit operator has the highest attraction
rate at the very early stages of the search. Soon, after 50 iterations or so, this
rate goes down leaving a less perturbative operator (namely, 1-bit) to take the
lead in the search process. The variant with recombination (DIM-MX, right plot)
reached the optimum much faster, in less than 30 seconds, which corresponds
to 1,300 iterations and 17,363 functions calls. The plot illustrates the run up
to 7,000 iterations for comparisons purposes with the DIM-MX variant. In this
case, the crossover operator attraction rate increases steadily up to the point
where the optima solution is found. Another interesting observation from these
experiments is the superiority of the I-bit mutation over the more standard
bit-flip operator for this problem.

Figure 2 offers a close up of the first 3,000 iterations showing population
size at each step and considering only two operators for each variant: 1-bit and
5-bit for DIM-M and, 1-bit and crossover for DIM-MX. Note that the horizon-
tal axis shows multiples of 10 iterations. As the right plot of Fig. 2 illustrates,
crossover is increasingly useful for DIM-MX search up to the point where the
optimal solution is found, which occurs around iteration 1,300. This confirms
an interesting property of crossover, which was observed by Ochoa et al. before
[13]. Crossover is a versatile operator, its role is dynamic: when there is high
diversity in the population such as at the beginning of the search process, it acts
as an explorative operator. However, when the population diversity is low (i.e.,
the population is largely converged) it acts instead an improvement operator
preserving the useful building blocks. For Onemax, it is clear that, at the be-
ginning of the search when individuals have low quality (i.e., contain few ones)
and are very different, crossover may quickly generate new individuals with more
ones by recombination and thus quickly explore more interesting areas. While
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Fig.1: Onemax. Attraction rate (sub-population size) of each operator (island)
along with best fitness over time. Values in the X axis multiplied by 10 give it-
erations. DIM-M, using mutation operators only. DIM-MX, combining mutation
with a crossover operator.

when the population has converged to higher quality (i.e., when individuals con-
tains mainly ones), crossover may also be useful by preserving the components
of the highly fit individuals. The probability of selecting crossover eventually
drops after the optimal solution is found (iteration 1,300) and the performance
curve flattens. This is probably due to the computational overhead of crossover
as compared to mutation operators. So, it ceases to be selected when no addi-
tional improvements are found in the search process. But clearly the operator
was increasingly useful from the early stages of the search up to the point when
the optimal solution was found. Therefore, crossover is a useful operator across
all the search process..

This contrasts with the behaviour of 5-bit on the left plot of Fig. 2 (DIM-M),
where 5-bit acts an efficient explorative operator early on (up to iteration 500
or so), but then it stops being useful, as it becomes too disruptive and its rate
drops (which has also been observed in [3]).

4.2 Course Timetabling

As a first experiment, we ran the two algorithm variants for two minutes (120
seconds) on a selected course timetabling instance. Specifically, instance number
1 from the ITC-2007 track 2 set, which consists of 500 students, 400 courses,
35 time-slots and 10 classrooms. Again, DIM-M contains 4 islands, one for each
mutation operator, while DIM-MX has 5 islands, corresponding to the 4 muta-
tions and the 1-point crossover. Figure 3 illustrates the results. The curves show,
for each operator, the sub-population size over time (measured as iterations, at
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Fig.2: Onemax. Close up of the attraction rate (sub-population size) of each
operator (island) along with best fitness over time, for the first 3,000 iterations.
Values in the X axis multiplied by 10 give iterations. DIM-M, illustrating 1-bit
and 5-bit . DIM-MX, illustrating I-bit and crossover

intervals of length 250). The black solid line in the plots shows the best individ-
ual fitness over time, with values indicated in the right-hand axis. In this case,
we are dealing with a minimisation problem. It can be seen that the number of
iterations is 9250 for DIM-M (left plot), while it is of 6800 iterations for DIM-
MX. This is because an DIM-MX iteration uses more resources as it consists of 5
operators. Despite this increased CPU demand, the variant with crossover pro-
duces the best results at the end of the 120 seconds run. Specifically, DIM-MX
finds a solution with fitness 582 (as seen in the right axis with fitness values),
which is a much better value (we’re mimimising soft-constraints violations) than
the 845 solution achieved by DIM-M. The dynamic rates of the operators across
the run is more complex for this problem than for the Onemax (Figs. 1 and 2).
The operators combine efforts and take turns in solving the problem. The curves,
however, indicate that when recombination is not used (DIM-M, left plot), the
swap (SWP) operator dominates the search, specially at the initial and middle
stages, while for the DIM-MX variant (right plot), crossover dominates at several
stages and enhances the search process.

For a more thorough comparison, we used the experimental conditions and
rules followed in the timetabling competition. Specifically, we used the bench-
mark program provided in the competition site to measure the allowed running
time on a given machine. This time is generally between 300 and 600 seconds
(per run, per instance) on a modern PC. Following the competition protocol, 10
replicas per instance were considered, and the remaining algorithm parameters
are reported in Table 1.

Table 2 shows results over some representative instances. The variant with
recombination DIM-MX, consistently produced the best results across all the in-
stances. Moreover, results with DIM-MX show a much lower standard deviation.
We suggest that this occurs because crossover guides the search by combining
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DIM-MX, combining mutation with a crossover operator.

information from the whole population, and contributes to escape local optima.
For the mutation-only variant, migration among islands is the only mechanism
for information exchange. It is more likely in this case for an island to be trapped

in a local optima.

Table 2: Course Timetabling. Representative ITC-2007 instances. Results are

shown in the form of: X,

Instance No. 1 4 10 15 18 20 23
DIM-M 345.2245.23(690.5662.49|2778.2210.4|30.412.1[40.1532.84|186.1435.12[1677.14420.2
DIM-MX 131.1640.10(586.3137.78|2358.2165.3| 7.75.3 |22.1622.30| 150.1015.2 | 1378.4290.3

A statistical analysis of the results across all test instances was also con-

sau)y

1

ducted. Normality and Homocesticity of the data was checked using Shapiro-wilk

test. The results of a two-way ANOVA test combining the 24 test instances and
2 algorithm variants is reported in Table 3. The test indicates whether (or not)

the means of several groups are equal, which in this context refers to whether

the competing algorithms have the same performance across the tests instances.

The obtained results support the existence of significant performance differences

between the DIM variants.

The numbers in bold font under the (Pr(> F)) label in Table 3 show the
corrected p-value. This value represents the probability of obtaining a test statis-
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tic result at least as extreme or as close to the one that was actually observed,
assuming that the null hypothesis is true (Hy : algorithms have the same per-
formance). Further analysis is provided to identify by other statistical test if the
pair of algorithms have significantly different performance. This is achieved with
Tukey HSD test with confidence level of 95% (reported at the bottom of Table
3), again the corrected p-value (0.0) give us a very strong presumption against
null hypothesis.

Table 3: Course Timetabling. Two-way ANOVA F test, pairwise ¢ test and Tukey
HSD test.

ANOVA Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 736576 736576 54.771 6.59e-13
Instance 23 1699991740 7390945 549.58 <2.2e-16
Residuals 455 6118956 13448

TukeyHSD diff lwr upr p adj

DIM —5 vs DIM — 4| -78.34 -99.15 -57.54  0.00

5 Conclusions

We propose to integrate crossover operators in a dynamic island-based model
for adaptive operator selection. This is implemented by using crossover with a
similar formal signature to mutation, and keeping a temporary solution in the
crossover island to serve as a parent. Importantly, our model is not a standard
island model in that: (i) a single operator instead of complete evolutionary al-
gorithm is kept in each island, and (ii) migration policies are dynamic rather
than static. Our results on two benchmark problems (Onemax, and real-world
instances of the course timetable problem), allow us to both prove the concept
and test its practical relevance. Having a crossover island was found to signifi-
cantly increase the performance, despite the added computational overhead.

Our results on the Onemax problem provide a visually appealing confirma-
tion of an argument proposed by Ochoa et al. [13] on the advantages of recom-
bination. Recombination performs a dual-role in genetic search according to the
level of genetic diversity in the population. At early stages, when the population
is diverse, recombination acts as a diverging operator (similar to a strong mu-
tation), increasing the search power and speeding up the process. Towards the
final stages of the search, when the population is genetically converged, recom-
bination can instead focus the population around the fitness optimum (similar
to a light mutation). Therefore, recombination has a dynamic role and is helpful
across the complete search process.

Future work will explore the behaviour of more complex crossover operators
and different migration policies over additional combinatorial problems.
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Abstract. The goal of this paper is to investigate on the overall per-
formance of CMA-ES, when dealing with a large number of cores —
considering the direct mapping between cores and individuals — and to
empirically find the best parameter strategies for a parallel machine. By
considering the problem of parameter setting, we empirically determine
a new strategy for CMA-ES, and we investigate whether Sell-CMA-ES (a
self-adaptive variant of CMA-ES) could be a viable alternative to CMA-
ES when using parallel computers with a coarse-grained distribution of
the fitness evaluations. According to a large population size, the resulting
new strategy for Self-CMA-ES and CMA-ES, is experimentally validated
on BBOB benchmark where it is shown to outperform a CMA-ES with
default parameter strategy.

Keywords: Empirical Study, Numerical optimization, Metaheuristics,
Algorithms Comparison

1 Introduction

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6] is one of the
most efficient algorithms for real valued single-objective optimization problems.
Thanks to its invariance properties [10], some default parameter values could
be tuned using a rather small set of test functions [6], and nevertheless provide
robust performances on a large variety of problems, from analytical benchmark
functions [8] to many real-world applications (see, among many others, [7]).

With the end of Moore’s years, increasing the speed of software nowadays
requires an efficient parallelisation. Evolutionary Algorithms like CMA-ES can
trivially be parallelized without modifying the underlying dynamics of the algo-
rithm by distributing the computation of the fitnesses of the whole population
on different slave nodes, the master node maintaining the population as a whole,
and ensuring the reproduction phase. For optimal efficiency, the population size
should be some multiple of the number of available computing units.

It turns out that the default value for the population size A for CMA-ES is
rather small, empirically set to 44 31n(n) [6], where n is the problem dimension.
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And increasing A without any further parameter tuning has been experimen-
tally demonstrated to perform poorly for CMA-ES and other types of Evolution
Strategies: [3] proposes a new update strategy for the global step-size; [21, 22]
suggests to modify the ratio between number of parents and number of offspring.
This paper investigates another approach to improve the performance of CMA-
ES in a distributed setting: assuming some given number of cores, the use of
computing resources is optimized by fixing the population size A to this number
of cores'. The goal is then to optimize the other parameters of CMA-ES to im-
prove its performances.

Today, parameter tuning is acknowledged as a mandatory step toward ef-
ficient optimization algorithms at large [11], be they exact combinatorial opti-
mization algorithms [12], or (possibly stochastic) heuristics and metaheuristics,
among which Evolutionary Algorithms [5] (more in Section 2.1). Off-line tuning
considers parameter tuning as a (meta-)optimization problem, and generic op-
timization algorithms can hence be applied [4,12, 14, 18]. These methods have
been in particular used to further improve CMA-ES performances [13,15,19],
therefore suggesting that the same approach could be used to tackle the problem
of a large A — though leaving open the issue of the generality of such tuning [20].

On the other hand, optimization is a dynamic process, and the best parame-
ter values at a given time of the search might no longer be efficient later. On-line
parameter tuning therefore seems a very promising approach. However, there
are very few (if any) examples of success of on-line tuning except in the his-
tory of Evolution Strategies, where CMA-ES, as its name suggests, is the most
sophisticated of a long line of algorithms that do efficiently implement on-line
adaptation of their main parameters. Yet, the adaptation mechanism of CMA-
ES itself has some parameters, and a first approach to their on-line tuning has
been recently proposed, leading to the so-called Self-CMA-ES [17], validated on
a few test functions, and in the framework of a large population size.

The goal of this work is to investigate CMA-ES parameter tuning in a dis-
tributed context (fixed large A), and in particular to compare experimentally
the off-line and on-line approaches for different values of A\ on the BBOB bench-
mark suite. The paper is organized as follows. Section 2 rapidly introduces the
problem of parameter setting, and details the hyper-parameters of CMA-ES and
how Self-CMA-ES adapts them. Section 3 introduces the experimental protocol
that is used in Section 4.4 to validate some choices of Self-CMA-ES and compare
the different approaches. Finally, the results are discussed and further research
directions are proposed in Section 5.

2 State of the Art

2.1 Parameter Setting

It is today widely acknowledged that the performances of optimization algo-
rithms are highly correlated with the values given to their parameters [11]. Fol-

! This also covers the case where \ is set to some multiple of the number of cores.
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lowing the classification discussed in [5], one should distinguish between off-line
and on-line parameter setting methods. In the off-line case (aka parameter tun-
ing), the important secondary issue is that of the generality of the setting, and
in the on-line case (aka parameter control), the distinction between dynamic,
adaptive or self-adaptive approaches.

Off-line approaches view the problem of parameter tuning as an optimization
problem in the space of parameters: the fitness of a parameter setting is the
performance of the algorithm at hand, and any optimization method on the
parameter space can be used given a practical way to compute the performance
of the algorithm. Assuming that the user knows the quantity she/he is interested
in (e.g., minimizing the runtime to reach a given solution quality, or optimizing
the solution quality given a fixed computational budget), here comes into play
the generality of the sought setting [20]. If the target of the experiments is a single
(or a small number of) problem instance(s), the performance of the algorithm
is computed by running it on each target instance (eventually aggregating over
the different instances in the target set). But very often, the goal of parameter
tuning is to find a robust setting that will give very good performances for some
class of problem instances that cannot be enumerated. The performance of the
algorithm is then approximated by running it on some carefully chosen test set
of instances of the target class, hoping the result will be general enough to cover
the whole class. Using large test sets improves the robustness of the setting, but
increases the computational cost of the parameter setting process, as one single
evaluation of the performance of a given parameter setting involves running the
algorithm at hand once for all instances of the test set.

Several generic optimization methods have been adapted to handle param-
eter tuning and cope with the above-mentioned generalization issue, based on
racing [16], on metaheuristics [18], on statistical modeling of the algorithm per-
formance with Gaussian Processes [2], or on local search [14]. The most recent
one, that has been used in this work, is SMAC (Sequential Model-based Al-
gorithm Configuration)? [12], that uses random forest regression to model the
algorithm performance as well as the uncertainty of its prediction. SMAC uses
the Expected Improvement measure to choose, given a model, which parameter
set to try next.

On-line parameter control, on the other hand, is concerned with tuning the
parameter values during the run of the algorithm, thus avoiding any generaliza-
tion issue and, more importantly, requiring little, if any, computational overhead.
Three approaches should be distinguished [5], depending on how the parameters
are modified during the run: in the deterministic approach, they are modified us-
ing a fixed schedule (that has to be designed off-line!); in the adaptive approach,
the parameters are modified according to some feedback from the current state
of the search; and in the self-adaptive approach, the parameters are subject to
evolution: each individual (potential solution of the original optimization prob-
lem) carries its own parameters, and though selection applies only to the fitness,

2 SMAC is freely available at http://www.cs.ubc.ca/labs/beta/Projects/SMAC/.
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it is hoped that successive selections will only select individuals that carry good
parameters.

Unfortunately, whilst adaptive or self-adaptive on-line control is potentially
more efficient than off-line tuning, offering a way to adapt the parameters to
the instance at hand, and to the current state of the search, there are very few
examples of successful on-line control, and most of them are highly problem-
dependent. As a matter of fact, the only success story of on-line parameter tuning
is that of Evolution Strategies. A detailed presentation of the history of Evolution
Strategies in this perspective is given in Section 3 of [5] and will not be repeated
here due to space restrictions. We will directly switch to introducing CMA-ES,
that can be viewed as the last link of the long chain of Evolution Strategies
variants, that went from adaptive to self-adaptive and back to adaptive tuning
of its Gaussian mutation.

2.2 CMA-ES

Let f be the real-valued objective function, defined on R"™. CMA-ES [6] evolves
a Gaussian distribution N'(m!, (¢)>C") on R" with mean m' (the current esti-
mate of the optimal solution) and covariance matrix (o*)? C"*, where the step-size
ot is isolated from the covariance direction C so they can be adapted separately.
The original (p/piy, A)-CMA-ES (Algorithm 1) works as follows. At iteration
t, the current distribution ./\/('mt7 (ot)? Ct) is sampled, generating A candidate
solutions (line 5), whose fitness is computed (line 6). The new mean m!™! is
computed line 7 as the weighted sum of the best y individuals according to f.
The adaptation of the step-size o' is controlled by the evolution path p‘*! that
stores, with relaxation factor c,, the successive mutation steps w (line 8).
The step-size is increased (resp. decreased) in the case of the length of the evo-
lution path p’™* is longer (resp. smaller) than the expected length it would have
under random selection (line 9). The covariance matrix is updated using both a

rank-one update term, computing the evolution path p.™* of successful moves of

the mean mﬂaitm of the distribution in the original coordinate system (line 11)
and the rank-y update, a weighted sum of the covariances of successful steps of
the best p individuals (using the weights of the update of the mean — line 12).
Two weights are used for this last update (line 13), ¢; for the rank-one term,
and ¢, for the rank-y term, hence ¢; and ¢, must be positive with ¢; +¢, < 1.

The default values of the parameters of the algorithm [6] are set in line 1,
but are hidden to the user in the standard CMA-ES distributions, except for the
population size A and the number of selected parents u. Though the already-
mentioned invariance properties of CMA-ES [10] ensure some robutsness of the
default setting, several improvements could be reached using off-line tuning of
some of these parameters, namely A (or more precisely the coefficient of \ as
a function of n) and the ratio §, as well as the parameters ¢, and d, for the
adaptation of o [13,19]. Note that some additional parameters related to the
stopping criterion are not presented in Algorithm 1, and have a large impact on
the restart versions of CMA-ES [1]. These were also tuned using IRACE in [15].
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Algorithm 1 The (p/pt, A)-CMA-ES (from [6])

ln(,u.+%)—lni

1: given n (S N+, )\ = 4+ \_311177,], m = I_)\/ZJ, w; = m fOI"L = 1[,6,
o = s, o = Gt doe = 14 ¢p 4 2max(0, /Bt — 1), e = g,
_ 2 _ 2(pw—2+1/pw)
A= F 19 me T T (22w

2: initialize m'=° € R", 6% > 0,p"° =0,p° =0,C"" " =1,t + 0

3: repeat

4: fork=1,...,Ado

5: x, = mb + JtN(O, Ct)

6: Jo = fz)

omT =3 wim -

t t
8 P = (1 co)pl + /o (2 — o)y (C)F miemt
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1 Pt = (1= co)ph + ho /(2 = co) i ™

12 C.=" w wi:Aﬂ:m‘ % (%‘;A;mt)T

13: C™M'=(1-c1—-c)C'+a pZHpZ“T + cuC,
—_—— -
rank-one update rank—p update

14: t=t+1

15: until stopping criterion is met

However, to the best of our knowledge, the parameter setting for the adaptation
of the covariance matrix ¢, (line 11, ¢; and ¢, (line 13) has only been addressed
on-line in [17], and will now be detailed.

2.3 Self-CMA-ES

In Self-CMA-ES [17], the on-line tuning of ¢, , ¢1 , ¢, relies on the hypothesis that
the best parameter configuration at time ¢ is the one that would have maximized
at time ¢ — 1 the likelihood of generating the best individuals selected at time
t. At every iteration ¢, an auxiliary optimization algorithm (another CMA-ES,
denoted CMA-ES ;) is hence used to compute this optimal configuration. After
computing the A offspring at time ¢ (lines 4-5 of Algorithm 1), the state of
the algorithm at time t — 1 is restored, and the optimization of parameters
Ce, €1, ¢y proceeds as follows: for each triplet value (c., ¢1, ¢, ), the virtual
distribution parameters ¢ and C are computed (lines 8-13) from state ¢t — 1,
and the performance of (c., ¢1, ¢, ) is the likelihood of generating the best p of
the actual A offspring at time ¢ from this virtual distribution. The triplet (c.,
¢1, ¢, ) that maximizes this likelihood is returned and is then used, at time ¢,
to complete the actual update of the actual mutation parameters of CMA-ES
(lines 8-13).

A first issue is that computing the log-likelihood of generating p given points
of R™ from a given Gaussian is costly and numerically unstable. It was hence
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replaced by a proxy, that works as follows. A points are sampled from the virtual
Gaussian, their virtual mean is computed (as in line 7), and the Mahalanobis
distance between the actual p best offspring at time ¢ and this mean is com-
puted. The sum of ranks of these distances used as a proxy for the likelihood.
The detailed formal description of this proxy for the likelihood is given in [17],
together with the global Self-CMA-ES algorithm.

A second issue is the possible overfitting of the parameters (c., ¢, ¢, ) due
to a single and limited sampling of the actual offspring at time ¢. And a third
issue is the computational cost of running a full CMA-ES,,, inside every itera-
tion of the master CMA-ES: even though no additional fitness computation of
the main CMA-ES is required, and even though the dimension of the auxiliary
optimization problem is only 3, sampling the virtual Gaussian distribution to
evaluate the proxy likelihood of many triples (and here the dimension is n) has a
non-negligible cost. However, both issues can be resolved simultaneously. First,
the CMA-ES,,. is not restarted from scratch at every iteration ¢ of the main
CMA-ES, but restarts from the state of the CMA-ES,,, at the end of itera-
tion t — 1; Second, only a small number of iterations of CMA-ES,.,; is actually
run, avoiding possible overfitting. Section 4.1 will describe some experimental
validation of this procedure.

3 Experimental Setting

The remainder of the paper is devoted to presenting experimental comparison
with the goal of validating some choices for Self-CMA-ES, and assessing when
and how Self-CMA-ES is a better choice than CMA-ES with its default values.

BBOB testbench: All experiments use test functions from the Black Box Op-
timization Benchmark (BBOB)? [9]. BBOB testbench contains 24 functions,
with known difficulty (e.g. non-separability, high conditioning, different levels of
multi-modality, with or without global structure, etc) and for different dimen-
sions (2, 3, 5, 10, 20, 40). BBOB also proposes an API for most programming
languages. To avoid any bias, for each function, 15 trials are run, where for each
trial, the optimum is moved and for the non-separable functions, the coordinate
system is rotated. Foreach trial, a maximum number of function evaluations of
105 % n is given before the algorithm is killed. Only the noiseless versions of the
functions were used here.

Performance Measure BBOB uses as performance measure the Expected Run
Time, that counts the number of function evaluations used to reach a given tar-
get objective value. taking into account the runs that failed to reach that target
value. This computational effort is normalized by dividing it by the dimension,
when the results on different dimensions need to be aggregated. In this work,
we only consider one target value 1078, and the number of function evaluations
#FEs as a measure of comparison. However, because we are interested in the dis-
tributed performance, in a context where only the time-to-solution matters, we

3 http://coco.gforge.inria.fr
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propose a new performance measure, the Virtual Wall Clock Time (VWCT),
focusing on the core usage, and formally defined as:

#FEs  #FEs

VIWOT = A Hcores (1)

The communication time is here neglected: in real situations on HPC clusters,
it will be several orders of magnitude smaller than the computation time of the
objective function (even if this is not true for BBOB functions).

Implementation: For all experiments, we used the Octave/MATLAB source
code provided by authors of [17]*, that was modified in order to expose the
parameters for automated parameter tuning, and/or to apply new parameter
strategies to some parameters.

4 Experimental Results

Four series of experiments are conducted. A first goal is to validate some choices
made in [17] for Self-CMA-ES; A second goal is to compare Self-CMA-ES with
some off-line tuning of (c., ¢1, ¢, ); A third goal is to identify the best strategy
for the choice of u; and the final goal is to assess on the whole BBOB benchmark
suite, the performances of Self-CMA-ES with respect to CMA-ES (using the best
setting that could be deduced from the previous experiments).

4.1 Validation of Self~-CMA-ES

A first sanity check of Self-CMA-ES is performed by tuning the initial values of
Ce, €1, ¢, with SMAC. The good news is that the performance of Self-CMA-ES
is not sensitive to these initial values, as the adaptive mechanism takes over,
whatever its initialization.

A second experiment checks the strategy for CMA-ES,,, (see Section 2.3),
running it for different number of iterations, or to full completion. The clear
conclusion is that indeed, as argued in [17], the best results are obtained when
running a single iteration of CMA-ES,,,, at each iteration of the main CMA-ES.
Because of the space constraints, none of these validation experiments is detailed
here.

4.2 On-line vs off-line tuning of c., ¢1, ¢,

In order to check the efficiency of the on-line tuning of c., ¢i, ¢, done by Self-
CMA-ES, it should be compared to the off-line tuning of the same parameters
(e.g., using SMAC, see Section 2.1) on the plain CMA-ES. However, because it
was demonstrated in [3,21] that the performance of CMA-ES (or other Evolution
Strategies) with a large A was highly dependent on i and the adaptation of o, and
also because SMAC experiments are very costly, it was decided to run one single

4 https://sites.google.com/site/selfcmappsn/
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SMAC campaign, tuning p and o, the initial value for o, for both algorithms
(using the adaptation scheme advocated in [3,21] is left for further work), and
Cc, €1, ¢, for CMA-ES. Table 1 describes the experimental conditions. Note
additionally that c¢; and ¢, must satisfy an additional constraint, that was
handled by returning a very high fitness without running the algorithm when
violated.

Test Functions F1-Sphere, F8-Rosenbrock,
F13-Sharp Ridge, F16-Rastrigin
Dimensions 10, 20
A Adef, 50, 100, 200, 500, 1000, 1500, 2000
SMAC target for Self-CMA-ES € [1,A], o0 €10,2]
SMAC target for CMA-ES |p € [1, )], 00 € [0,2], (ce, c1, ) € 0,1

Table 1: Experimental setting for SMAC on CMA-ES and Self-CMA-ES.

Typical results are given in Figure 1. The best values for p (Figure 1a) are
in agreement with [21], i.e., are lower than the default % Some regularity with
respect to A could however be identified, and will be investigated in Section 4.3.

Figure 1b is typical of the behavior of the best values of og. Apart the fact
that they usually are lower than the value used in [17] (2.0), it was not possible
to fit any relation with the dimention of the problem. However, the influence
of this parameter seemed limited accross the experiments. Hence, all further
experiments will use ¢ = 1.3, a rough average of all best values returned by
SMAC.

No trend could be observed either for c., c1, ¢, , except a rather large vari-
ance of the best values returned by SMAC. Thus the default parameter setting [6]
will be used in the remaining of the experiments for CMA-ES.

Finally, Figure 1c plots the best overall values of both algorithms using the
best parameterization returned by SMAC for each of them. The good news is
that for all A, Self~-CMA-ES can be tuned to perform at least as good as the best
tuning of CMA-ES, though the large variances suggest that more experiments
should be run to better assess this conclusion.

4.3 Choice of p

The goal of the next series of experiments is to find a generic parametrization
for Self-CMA-ES, i.e. a parametrization that is good on all instances without
using SMAC for each new instance.The possible values for p are hence restricted
to the discrete list of values given on Table 2, depending on . As said, oy is set
to 1.3 and all other parameters are set to the default value. As for CMA-ES, the
values for c., c1, ¢, are set to their default values as well — while they are of
course adapted on-line by Self-CMA-ES.

Figure 2 displays the result for function F6-Attractive Sector in 10D for all
(A, p) pairs. As for all functions of Table 2, the best values are obtained for
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Fig. 1: Results for SMAC (see Table 1): Best values for p (a) and og (b), and best
performances (c) of CMA-ES (A) and Self-CMA-ES (B) on 10D-Rosenbrock.

we [%, In(A)], while both algorithms achieve their worst performances whith the
default strategy u = % The value p = % is hence retained for the final validation
next Section, as providing quasi-optimal results for all functions.

Yet another validation of the on-line strategy for setting c., ¢1, ¢, is pre-
sented on Figure 3, that compares, for A = 200, and on the F1-Sphere function
on 10 and 20 dimensions, Self-CMA-ES with a CMA-ES for which c., ¢1, ¢,
have been tuned using SMAC for each value of p independently, denoted A*
on the Figure. The results of the tuned CMA-ES are better than those of Self-
CMA-ES, though not significantly for the chosen value p = %. Furthermore,
remember that the tuning with SMAC requires to run the algorithm several
hundreds times. Furthermore, applying the parameters returned by SMAC for
the 20D case to the 10D case displays results that are similar to those of Self-

CMA-ES (not shown here).

Another interesting conclusion that can be drawn from Figure 2 is that the
VWCT for A = 500 and A\ = 1000 have very similar values: adding more cores
does not help, and other strategies are needed to take full benefit of CMA-ES
on large computing clusters.
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Fig. 2: Performances of CMA-ES (A, black) and Self-CMA-ES (B, grey) on 10D-
Attractive Sector (Agey = 10), for all pairs (A, p) of Table 2. Empty columns
mean poor results (scaled for readability).

Values
A (Ades, 50, 100, 150, 200, 500, 1000)
© %7 %7 17)2372*ln(A)71n()\)

Functions |F1-Sphere, F6-Attractive Sector, F8-Rosenbrock,
F11-Discuss, F12-Bent Cigar
Dimensions 2, 10, 20

Table 2: Setting for the ”u” experiments. oy is set to 1.3.

4.4 Overall BBOB Comparisons

The final experiment is to perform complete BBOB comparisons between the
retained generic parametrization for both Self-CMA-ES and CMA-ES, i.e., yu =
% and o9 = 1.3 (the values of c., ¢1, ¢, are set to their default values for CMA-
ES). The curve for the default strategy for CMA-ES (u = %) was also added to
the comparison. The case A = 200 was chosen as representative.

Figure 4 displays the aggregated results for all functions, for dimensions 5,
10, 20 and 40. Except for dimension 5, Self-CMA-ES performs better than both
CMA-ES, and the advantage increases with the dimension. Looking now at more
detailed results, on Figure 5, it can be seen that the worst results for Self-CMA-
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Fig.3: Comparison of CMA-ES (A, black), Self-CMA-ES (B, grey), and the
tuned CMA-ES (A*, white) on the Sphere for A = 200 and as in p of Table 2.

ES are obtained for the separable functions in dimension 40 (Figure 5a), where
it sometimes fails to reach the target value. Further investigations are needed
to understand why this happens. Also note that the results for low or moderate
conditioning functions (not shown here) show slightly worse results (though not
as bad as for the separable functions) for Self-CMA-ES.

5 Discussion and Conclusion

This paper has experimentally studied parametrization strategies of CMA-ES
that is run in a distributed environment when the primary goal is to minimize the
wall-clock time-to-solution by using all available computing units (e.g., cores).
This situation was simulated by considering large values of the population size
A as constraints, and tuning the other parameters accordingly. In particular, the
Self-CMA-ES approach [17] has been demonstrated to be, in most cases, a viable
alternative to the default CMA-ES for that goal.

The experiments presented in this paper have first validated most of the
choices made in the original Self-CMA-ES approach [17] for the online control of
the usually hidden parameters c., ¢1, ¢, that govern the update of the covari-
ance matrix in CMA-ES. For values of A up to 2000, we have observed that the
best strategy for the choice of the number of parents p is pu = %. This strategy
outperforms the default strategy p = %, for both CMA-ES and Self-CMA-ES.
Also, this new strategy slightly outperforms the strategy u = % defined in [21],
although [21] considers larger values of A.

Regarding the initial value og for the step-size o, the best value for both
CMA-ES and Self-CMA-ES was found to be smaller than that used in [17]
(0=2), while nevertheless higher than the default value used [6] (¢ = 0.3). The
latter is explained by the increase of A, resulting in a larger coverage of the
search space by the initial sampling. Additionally, the new value of o asserts the
assumption of adapting the step-size when dealing with a larger A, as proposed
in [21].

The resulting new strategy for Self-CMA-ES and CMA-ES uncovers good
performances, significantly outperforming the default strategy. Moreover, even

11
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Fig. 4: Bootstrapped empirical cumulative distribution of VWCTfor all functions
in 5D, 10D, 20D, 40D. Self-CMA-ES® and CMA-ES® use p = % while CMA-ES

uses the default p = %

when CMA-ES is tuned off-line anew for each problem instance, Self-CMA-ES
remains a good alternative to CMA-ES, performing only slightly worse while
avoiding the huge computational cost of the tuning process.

More work is needed, however, in order to take full benefit of a very large
number of computing units, as the wall-clock time performance seems to stagnate
above 500 cores. Possible directions are to hybridize the method proposed here
with those proposed in [3] and [21] and also modify the adaptation mechanism
of the step-size 0. Another further direction is concerned with detecting situa-
tions where Self-CMA-ES adaptation mechanism performs poorly, and to switch
back to the default values for c., ¢, ¢, in such cases, thus guaranteeing per-
formances at least as good as those of CMA-ES. Another approach would be to
consider a portfolio of strategies in order to maximize the expected performance
of CMA-ES, that should include CMSA-ES [3], that outperforms CMA-ES in
large dimensions and population sizes.
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Towards Human-Competitive Game Playing for
Complex Board Games with Genetic Programming

Denis Robilliard and Cyril Fonlupt

LISIC, ULCO, Univ Lille-Nord de France, FRANCE

Abstract. Recent works have shown that Genetic Programming (GP) can be
quite successful at evolving human-competitive strategies for games ranging from
classic board games, such as chess, to action video games. However to our knowl-
edge GP was never applied to modern complex board games, so-called eurogames,
such as Settlers of Catan, i.e. board games that typically involve four character-
istics: they are non zero-sum games, multiplayer, with hidden information and
random elements. In this work we study how GP can evolve artificial players
from low level attributes of a eurogame named “7 Wonders”, that features all the
characteristics of this category. We show that GP can evolve competitive artificial
intelligence (AI) players against human-designed Al or against Monte Carlo Tree
Search, a standard in automatic game playing.

1 Introduction

Games are a classic Al research subject, with well-known successful results on games
like chess, checkers, or backgammon. However, complex board-games, also nicknamed
eurogames, still constitute a challenge, which has been initiated by such works as [1]
or [2] on the game “Settlers of Catan”, or [3] on the game “Dominion”. Most often these
games combine several characteristics among being no zero-sum games, multiplayer,
with incomplete information and random elements, together with little formalized ex-
pert knowledge on the subject. Monte-Carlo Tree Search (MCTS), which gained much
notoriety from the game of Go [4], seems a method of interest in this context because
it does not require background knowledge about the game. Genetic Programming (GP)
could also qualify as a possible alternative, for the very same reason.

In their pioneering work [5], Hauptman and Sipper were successful at develop-
ing winning strategies for chess endgames with GP, and Sipper also achieved impres-
sive results on Robocode and Backgammon [6]. For instance the top evolved strategy
for Backgammon was able to get a win percentage of 62.4% in a tournament against
Pubeval, one of the strongest linear neural network player. However to the best of our
knowledge, GP has never been used to automatically evolve a competitive player for a
complex eurogame.

In order to simplify the obtaining of an Al for eurogames, many published works
(whatever the Al engine) use some restricted game configuration or only a limited sub-
set of the game rules. E.g. in [2] no trade interactions between players are allowed, and
in [3] only a subset of the possible cards are used.
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In this paper we focus on the creation of a GP evolved Al player for the “7 Wonders”
(7W) eurogame, presented in the next section. In order to test the potential of GP, one
of our requirements is to tackle the full game rules, including the trading mechanism.

In the next section we introduce the 7W game and its rules. Then we present the
program architecture that was used for evolving GP players. After dealing with specific
issues that arose during implementation or testing, we present our experiments and their
results.

2 Description of the “7 Wonders” Game

Board games are increasingly numerous, with more than 500 games presented each year
at the international Essen game fair. Among these, the game “7 Wonders” (7W), issued
in 2011, obtains a fair amount of success, with about 100,000 copies sold per year and
several expansion sets. It is basically a card game, whose theme is similar to the many
existing “civilization” computer games, where players develop a virtual country using
production of resources, trade, military and cultural improvements.

The 7W game belongs in the family of partially observable, multiplayer, stochastic,
and also competitive games (although in any N-player game with N > 2, several
players may share cooperative sub-goals, such as hindering the progress of the current
leading player). All these characteristics suggest that 7W is a difficult challenge for Al

In a 7W game, from 3 to 7 players!' are first given a random personal board among
the 7 available, before playing the so-called 3 ages (phases) of the game. At the be-
ginning of each game age, each player gets a hidden hand of 7 cards. Then there are 6
rounds, where every player simultaneously selects a card from his hand and either:

— puts it on the table in his personal space;
— or puts it under his personal board to unlock some specific power;
— or discards it for 3 units of the game money.

The last decision (or move) is always possible, while the first two possible moves
depend on the player ability to gather enough resources from his board or from the
production cards he already played in his personal space. He can also use game money
to buy resources from cards played by his left and right neighbors. This trading decision
cannot be opposed by the opponent player(s) and the price is determined by the cards
already played.

After playing their card, there is a so-called drafting phase, where all players give
their hand of remaining cards to their left (age 1 and 3) or to their right (age 2) neighbor.
Thus the cards circulate from player to player, reducing the hidden information. When
there are less than 6 players, some cards from his original hand will eventually come
back to every player . On the 6th turn, when the players have only two cards remaining
in their hand, they play one of the two and discard the other (except with some player
board conditions).

The goal of the game is to score the maximum victory points (VP), which are
awarded to the players at the end of the game, depending on the cards played on the

! While the rule allows 2 player games, these are played by simulating a 3rd “dumb” player.
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table, under the boards and the respective amounts of game money. The cards are al-
most all different, but come in families distinguished by color : resources (brown and
gray), military (red), civil (blue), trade (yellow), sciences (green) and guilds (purple).
The green family is itself sub-divided between three symbols used for VP count.

This game presents several interesting traits for Al research, that also probably ex-
plain its success among gamers:

it has a complex scoring scheme combining linear and non linear features: blue
cards provide directly VPs to their owner, red cards offer points only to the owner of
the majority of red cards symbols, yellow ones allow to save or earn game money,
green ones give their owner the number of identical symbols to the square, with
extra points for each pack of three different symbols.

resource cards have delayed effect : they mainly allow a player to put VPs awarding
cards on later turns; this is also the case of green cards that, apart from the scoring
of symbols, allow some other cards to be played for free later on.

— there is hidden information when the players receive their hand of cards at the
beginning of each age of the game.

there is a great interactivity between players as they can buy resources from each
others to achieve the playing of their own cards. Some cards also give benefits or
VPs depending on which cards have been played by the neighbors. Moreover the
drafting phase confronts players with the difficult choice of either playing a card
that gives them an advantage, or another less rewarding card that would advantage
a neighbor after the drafting phase.

the game is strongly asymmetric relatively to the players, since all player boards
are different and provide specific powers (such as resources, or military symbols).
Thus some boards are oriented towards specific strategies, such as maximizing the
number of military symbols, or collecting green cards symbols, for example.

The number of different cards (68 for 3 players, from those 5 are removed randomly)
and the 7 specific boards, together with the delayed effect of many cards and the non
linear scoring, make it difficult to handcraft an evaluation function. Notably, the number
of VPs gained in the two first game ages (card deals) is a bad predictor of the final score,
since scoring points at this stage of the game usually precludes playing resource cards
that will be needed later on.

We can give an approximation of the state space size for 3 players, by considering
that there are 68 possible different cards, from those each player will usually play 18
cards. We thus obtain (?g) X (‘{g) X (‘;’2) = 1E38 possible combinations, neglecting
the different boards and the partition between on-table and behind-the-board cards that
would increase that number.

3 GP Individual Architecture

Devising a new strategy for a complex board game is typically choosing the best move
(or decision) for the player at every decision step of the game. As explained in section 2,
a player strategy for 7W is to choose the hopefully “best” couple composed of a card
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and a way how to play it (on the board, under the board or discard). Our goal is to evolve
a program that is able to cope well enough on average with every game position.

For this purpose, the design of an evaluation function, able to rate how a given board
is promising for the current player, is a classic mean of obtaining an artificial player.
Once this evaluation function has been developed, one can implement a variant of the
well known minimax search algorithm. However, as explained in the presentation of the
game, crafting such a function from scratch is very challenging in the case of 7W, due
to the many different and often delayed ways of scoring points.

It feels natural to try and see if GP could evolve such an evaluation function. We
partly proceed along the lines explored for chess endgames in [5]:

— in a similar way, we want to minimize the depth of the search, using less brute-force
power and so use an efficient evaluation function for the current position;

— to the contrary, we will not use complex terminals for GP, for two motives. First
there is not much expert knowledge at disposal to suggest complex GP inputs for
7W. Second, we want to try and obtain a good Koza’s “A to I” ratio : can GP work
out competitive players from raw game attributes ? We will see that the answer is
positive.

Terminal set The terminal set is the most sensitive part as it should ideally embrace
the whole set of variables that are able to predict the game evolution. Our terminal set
is divided into two parts:

— asubset of 17 constant values of type real, regularly spaced in the interval [—2, 2],
intended to provide raw components for GP to build expressions;

— a subset of game related terminals. They try to embrace what a casual player may
use among the information provided by the current game state. For example, a
player will have a look at the military power of his left/right opponent, he may
evaluate the number of victory points awarded by his science cards, look at how
many different resources he has, and so on. As said above, we want as far as pos-
sible to avoid complex terminals, the sole exception being Xvp that computes the
total number of victory points already gained by the player (a computation which
usually needs too much time for a human to do during play).

All game related terminal are listed in Tab. 1. Their computational complexity is
low, so they will guarantee a quick GP player.

Many more terminals, reflecting various information that a player can use, could be
added. For instance most of the terminals introduced in Tab. 1 can be derived with a left
and right version to check the same information for opponents, such as is already done
with the military strength.

Function set The function set is kept simple. Following the classic example of Shan-
non’s evaluation function for a chessboard [7] that computes a linear weighted sum of
the number of pieces and of some piece combinations, we decided to restrict the func-
tion set to the 3 basic operations {+, —, *}. Note that even if the set may seem limited,
it allows non linear combinations of the terminals.
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Table 1. Game related terminal set for “Seven Wonders”

Terminal ‘ Value type ‘ Note

Xmil int military strength of the current player

Xlmil int military strength of the left player

Xrmil int military strength of the right player

Xtrade int number of own commercial cards (yellow cards)
Xtradrsc |int number of own yellow cards providing resources
Xcivil int number of own civil cards

Xrsc int number of own resource cards

Xdiffrsc |int number of own different resource types
Xscience |int number of own science cards

Xsciencep|int victory points earned by own science cards
Xgold int number of own gold coins

Xchain |int number of cards that could be chained (i.e. played for free)
Xage int current age (i.e. card deal number)

Xturn int current ply of the current age

Xvp int total victory points earned so far by the player

4 Computing Individual Fitness

The fitness evaluation is a tricky part when we have to evaluate a player. It is quite ob-
vious that playing against an under-average player or a random player will not provide
interesting feedback. Furthermore as the game has some stochastic features, a player
may win or lose even if his average level is better than those of his opponents. This
means that we must be very careful when evaluating the GP player.

In order to evaluate the GP individuals, we need to oppose them to other Als. In the
absence of any human designed evaluation function that could be used in a minimax
framework for providing an opponent, we opted for the development of a rule-based
Al and a MCTS player, that are presented below. Another solution could have been to
oppose a GP player to another (or some others) from the GP population: first experi-
ments seemed less promising, so this solution was put aside for the moment.

4.1 A rule-based AI

Designing rules for 7W seems rather easy and feels close to the way a beginner player
can proceed, considering the cards already played, those in hand, and deciding one’s
next move. Our rule-based Al (rule-Al) follows a set of rules of decreasing priority,
stated below, for the two first deals of a game (when a card is said as being “always
played”, it means of course if its cost is affordable):

— acard providing two or more different resource types is always played;

— a card providing a single resource type that is lacking to the rule-Al is always
played;
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— amilitary card is always played if rule-Al is not currently the only leader in military
strength, and the card allows rule-Al to become the (or one of the) leading military
player(s);

— at random either the civil card with the greatest victory points (VP) award or one
science card is always played;

— arandom remaining card is played;

— as a default choice, a random card is discarded.

Contrasting with the first two deals that mainly involve investment decisions, the last
deal of the game, in the so-called third age, appears as the time to exploit the previous
choices: the set of rules is now replaced by choosing the decision with best immediate
VP reward.

Clearly we do not hope to reach championship level with such a simplistic set of
rules, nonetheless the resulting player is able to beat human beginners. A comparison
with MCTS success rate is given below in Sect. 4.3.

4.2 MCTS player

The Monte-Carlo Tree Search algorithm (MCTS) has been recently proposed for deci-
sion-making problems [8, 9, 4]. Applications are numerous and varied, and encompass
notably games [10—14]. In games when evaluation functions are hard to design, MCTS
outperforms alpha-beta techniques and is becoming a standard approach. Probably the
best known implementation of MCTS is Upper Confidence Tree (UCT), presented be-
low.

The idea is to build an imbalanced partial subtree by performing many random
simulations from the current state of the game, and simulation after simulation biasing
these simulations toward those that give good results, thus exploring the most promising
part of the game tree. The construction is done incrementally and consists in three
different parts : descent in the partial subtree, growth by adding a new child under the
current leaf node, evaluation of the current branch by a random simulation of the end
of the game.

The descent is done by using a bandit formula, i.e. at node s, among all possible
children Cy, we choose to descend on next node s’ € C, that gives the best reward
according to the formula :

s’ + arg max
J€Cs

Tj+ Kyer
n;
J

Zn(ns)‘|

with Z; the average reward for the node j (it is the ratio of the number of victories
over the number of simulations), 7, the number of simulations for node j and n; is
the number of simulation for the node s, with ng = ). n;. The constant Ky is an
exploration parameter used to tune the trade-off between exploitation and exploration.
At the end of the descent part, a node which is outside the subtree has been reached and
is added to the sub-tree (unless this branch already reach the end of the game). In order
to evaluate this new node, a so-called playout is done: random decisions are taken until
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the end of the game, when the winner is known and the success ratio of the new node
and all its ascendant are updated.

We refer the reader to the literature cited at the beginning of this subsection for more
information about MCTS, and also to [15] for a more detailed presentation of our MCTS
dedicated to 7W: we simply sketch some implementation details in the following. A
single N-player game turn (corresponding to the N player simultaneous decisions), is
represented in the MCTS subtree by [N successive levels, thus for a typical 3-player
game with 3 ages and 6 cards to play per age, we get 3 X 6 = 18 decisions per player
and the depth of the tree is 18 x 3 = 54. Of course we keep the simultaneous decisions,
that is the state of the game is updated only when reaching a subtree level whose depth
is a multiple of N, thus successive players (either real or simulated) make their decision
without knowing their opponent choices for the curent turn. The average node arity can
be estimated empirically at an average of 14 children per node, and a good value for
Ky cr, also obtained empirically is between 0.3 and 0.5.

To implement MCTS one just need to know how to generate the possible moves
for the current state of the game. Its drawback is its running time: obtaining a good
level of play typically implies to simulate the completion (playout) of several thousands
games. To obtain a better trade-off between speed and quality, we increase the number
of playouts at game age 2 and 3 since the completion of the game simulations is shorter:
when we state N simulations, we mean N for the second game deal, 0.66 * IV for the
first deal, and 1.33 * N when playing the last deal (thus it is /V simulations on average
for the whole game).

The tuning of MCTS, notably the K7 constant, may be a bit tricky: we presented
this in [15], with the comparison of several MCTS enhancements. In the next sections
we use a refined value for Kyyor = 0.5, that appears slightly better, and we present
new results.

4.3 Comparison of rule-AI and MCTS

To serve as a reference in Sect. 5, we compared the success rates of the two Als pre-
viously described. When we opposed two rule-Als to the MCTS player with 1500 and
3000 playouts and Ko = 0.5 we obtain the resulting success rates on 5000 games:

Table 2. Comparisons of success rates (SR) for two identical rule-Als and one MCTS player with
either 1500 or 3000 simulations per move.

# MCTS simulations rule-AI-0 rule-Al-1 MCTS
1500 18.92% =+ 1.09|21.10% =+ 1.13(59.98% =+ 1.36
3000 17.80% =+ 1.06(17.76% =+ 1.06|64.44% + 1.33

As expected the two clones of rule-Al obtains very similar success rates. The MCTS
is a better player than rule-Al, and the bigger the number of simulations allowed per
move for MCTS, the better the success rate, as expected in theory.

143



4.4 Choosing Moves and Assigning Fitness for GP

In order for the GP individual to choose a move, we examine the resulting game state of
all possible GP moves, together with a random move of the opponents (remember that
all players move simultaneously). We usually do not know exactly which cards are in
the opponent hands, but we maintain the set of the possible cards in order to sample their
possible decisions, doing N determinizations. That means that we simulate a random
choice of opponents moves on their potential cards NV times for each decision of the GP
player (see e.g. [16, 15] for an illustration of this technique). We select the GP move that
is associated to the biggest evaluation function value summed (or equivalently averaged)
on the set of determinizations. This is indeed equivalent to an expectimax search of
depth one.

Ideally an expectimax search should sample every possible opponent moves. In
our case, as there can be up to 1764 possible combinations of opponent moves due to
incomplete information, this would not be practically feasible: remember this must be
done for all moves, in all games, for all individuals and all generations. Thus we fix the
number of determinizations to N = 11, for the sake of rapidity: this is a low value but
it already yields a satisfying level of play.

When GP needs the fitness of an individual, we have to assess its quality as an eval-
uation function. We proceed by playing a set of P games where the GP individual is
opposed to other Als. Finally the fitness is the success ratio (percentage of the games
won) obtained by GP on the P games. It proved necessary to train GP on several hun-
dred games to obtain a suitable fitness. Early experiments on 100 independent games
gave fragile GP players, that lost almost always with some configurations of player
boards (there are 210 such configurations). We settled on 500 games, composed with
25 different random player board configurations and 20 deals per configuration, to as-
sess one individual fitness. Again for the sake of speed, we chose ruleAl as the only
opponent for training GP since it is much faster than MCTS, but MCTS could still be
used for validation.

5 Experiments and results

We recall that we evolve GP players (strictly speaking evaluation functions) trained
against ruleAl, described previously, and the fitness is the success ratio obtained on 500
games. Each GP move is chosen as the one bringing the greatest evaluation value by a
depth one expectimax on 11 random determizations of opponent moves.

The default GP parameters are: population size of 25 individuals only, tournaments
of size 2, “steady state” worst individual replacement, crossover probability 0.6, point
mutation probability 0.15 and 100 generations. The population size is small compared
to usual practice, but it was required to reduce the computing time: a GP run against
rule-Al still take two days on a 32 cores Intel Xeon CPU E5-4603 v2 @ 2.20GHz ma-
chine with multi-threaded fitness computation. The parallelization is done on the 500
games needed to assess a significant fitness. We chose a crossover probability rather
less than standard, with a higher than usual mutation rate, for the sake of keeping more
diversity in such a small population. Time constraints prevented us to perform a system-
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atic study of these parameters, however the results derived from this setting are already
satisfying.

Once a GP player is evolved, its success ratio is validated on 5000 games. Half of
the validation games are played on the same 25 board configurations used for training,
the other half is played on random configurations, and in both cases the card deals
are completely independent from the learning phase. Note that while evolution is time
consuming, the resulting GP program plays almost instantly. Validation on 5000 games
against rule-Al takes less than an hour, while against MCTS it still takes several days,
due to the MCTS cost.

5.1 Training GP versus 2 rule-Als

When trained against two clones of rule-Al, GP yielded a best individual with fitness
0.754 at generation 93, that is the evolved player wins three games over four, while
the expected win rate is 0.33 if it were of the same strength as its opponents. Once
simplified (with a standard symbolic calculus package) this best individual, listed in
Fig. 1, is amenable to some analysis and interpretation.

(6xXdiffrsc + 8xXmil + 5«Xtrade + 9.5+Xtradrsc + 5xXvp
- 4.875)«Xtradrsc + 4xXdiffrsc + 5+«Xmil + 5xXsciencep +
3.0xXtrade + 17«Xtradrsc + Xvp - 11.5

Fig. 1. Best individual trained against 2 rule-Als, winning 70% of games (obtained at generation
90, average fitness 0.56)

While this individual is not a linear function, it remains a rather simple quadratic
polynomial and still looks like a traditional weighted combination of attributes. We can
see that some terminals are associated to strong weights, notably Xt radsrc the num-
ber of cards providing a choice of alternative resources, Xmi 1 the military strength and
Xdif frsc the number of different available resources. Intuitively these are important
inputs since having access to different resources help in developing one’s game and it
is rather difficult to win a game without any success in the military strategy. Indeed our
rule-Al uses similar information as highest criteria for decision taking — but with much
less success!

The validation experiment is presented in Tab. 3. The GP fitness being measured on
the training set, it proved to be too optimistic, as expected in theory. The validation win
rate is nonetheless superior to rule-Al and unexpectedly very close to the success rate
of MCTS parametered with 1500 simulations per move. It feels rather remarkable that
GP could evolved such a successful formula, that is:

— unique for the whole game,

— using only raw game attributes,

— able to choose the next move with a search of depth only one, which is almost
instantaneous.
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Table 3. Comparisons of success rates (SR) for two identical rule-Als and the GP player of Fig. 1.

rule-AI-0 rule-Al-1 GP
22.20% =+ 1.15(21.52% + 1.14|56.28% + 1.37

5.2 Validation against MCTS with 1500 and 3000 playouts

In Tab. 4 we validate our best GP individual against rule-Al and MCTS. GP is the best
of the three, while MCTS wins the second rank. It seems curious since MCTS scored
better than GP when opposed only to ruleAl, but this is an illustration of the difficulties
raised when opposing three players: the strategies of two players may combined to the
detriment of the last. One can notice than MCTS still wins at least one third of the games
so it means that it is rule-AI which gives way to either GP or MCTS. By contrast, GP
appears rather robust in this context against the increase in MCTS simulations.

Table 4. Comparisons of success rates (SR) for one rule-Al, one MCTS with 1500 playouts, and
the GP player of Fig. 1.

# MCTS simulations rule-Al MCTS GP
1500 24.14% + 1.22|34.13% =+ 1.35|41.72% =+ 1.40
3000 20.40% =+ 1.12|39.11% + 1.35|40.49% + 1.36

In Tab. 5, MCTS is opposed to 2 clones of GP. With 1500 playouts MCTS is no
more able to win one third of the games, thus clearly meaning that GP has a superior
play ability. But once the number of playouts is raised to 3000, this time MCTS is the
winner. Again, it is an illustration of the dependencies between more than two players:
there is no weak rule-Al player that GP can loot, and probably the two similar GP
individual hinder themselves by trying to share the same strategy.

Table 5. Comparisons of success rates (SR) for one MCTS with 1500 playouts, against two GP
player clones of Fig. 1.

# MCTS simulations GP-1 GP-2 MCTS
1500 34.40% + 1.32|135.34% =+ 1.33|30.26% + 1.27
3000 32.34% + 1.30|31.82% =+ 1.29|35.84% + 1.33

These results show that GP can evolve successful players that can compete with
MCTS, the current method of choice when evaluation functions are not easy to obtain.
Notice that even if our GP individual plays remarkably against the other artificial oppo-
nents, it is not yet tough enough to deal with experienced human players. The absence
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of information about opponent moves is a strong limitation that could be exploited by
humans.

On the one hand MCTS keeps the advantage of being improved simply by increas-
ing the number of simulations (although it may become too slow to be acceptable),
while on the other hand the GP player is several order of magnitude faster but cannot
be improved as easily.

6 Conclusion and future works

This study has shown that GP can evolve very competitive players for complex board
games in the eurogame category, even from basic inputs. The main technical problem
we encountered was the huge amount of computing time needed to obtain a signifi-
cant fitness. This prevented us, at least for the moment, to obtain GP players trained
against MCTS. We stress again that, on the opposite, once evolved, the resulting player
is almost instantaneous, several orders or magnitude faster than MCTS.

Training only against the rule AL which is a weak player, nonetheless allowed GP to
beat MCTS with 1500 playouts on average, and to compete with a 3000 playout MCTS
in a mixed players context. This a significant result which was unexpected, especially
as 3000 playouts already incurs a significant delay for MCTS.

Many tracks are opened by this study. Some are GP oriented such as co-evolving
programs by assessing fitness against the other individuals of the population; or trying
smarter terminals and expanding the function set to include e.g. “if”” statements; or split-
ting the program in three subroutines, one for each deals of the game, in order to obtain
an increased level of play by adjusting the evaluation function to the current phase of
the game. Tuning the evolution parameters, and also the number of determinizations
are natural extensions, and also testing our GP evaluation function in an expectimax of
depth greater than one.

A more fundamental idea could be to try to bridge the gap between GP and MCTS,
e.g. using GP as a surrogate estimation of a fraction of the playouts, in order to speed
up MCTS, or using GP to build hyper-heuristics using MCTS sampling, GP evolved
evaluation functions and even rule-Al as building bricks. We could also try to learn
game patterns, following the ideas in [17]. At last, tackling other eurogames is also a
future objective.
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